Skip to content

prefect.agent

The agent is responsible for checking for flow runs that are ready to run and starting their execution.

PrefectAgent

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/agent.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
class PrefectAgent:
    @experimental_parameter(
        "work_pool_name", group="work_pools", when=lambda y: y is not None
    )
    def __init__(
        self,
        work_queues: List[str] = None,
        work_queue_prefix: Union[str, List[str]] = None,
        work_pool_name: str = None,
        prefetch_seconds: int = None,
        default_infrastructure: Infrastructure = None,
        default_infrastructure_document_id: UUID = None,
        limit: Optional[int] = None,
    ) -> None:
        if default_infrastructure and default_infrastructure_document_id:
            raise ValueError(
                "Provide only one of 'default_infrastructure' and"
                " 'default_infrastructure_document_id'."
            )

        self.work_queues: Set[str] = set(work_queues) if work_queues else set()
        self.work_pool_name = work_pool_name
        self.prefetch_seconds = prefetch_seconds
        self.submitting_flow_run_ids = set()
        self.cancelling_flow_run_ids = set()
        self.scheduled_task_scopes = set()
        self.started = False
        self.logger = get_logger("agent")
        self.task_group: Optional[anyio.abc.TaskGroup] = None
        self.limit: Optional[int] = limit
        self.limiter: Optional[anyio.CapacityLimiter] = None
        self.client: Optional[PrefectClient] = None

        if isinstance(work_queue_prefix, str):
            work_queue_prefix = [work_queue_prefix]
        self.work_queue_prefix = work_queue_prefix

        self._work_queue_cache_expiration: pendulum.DateTime = None
        self._work_queue_cache: List[WorkQueue] = []

        if default_infrastructure:
            self.default_infrastructure_document_id = (
                default_infrastructure._block_document_id
            )
            self.default_infrastructure = default_infrastructure
        elif default_infrastructure_document_id:
            self.default_infrastructure_document_id = default_infrastructure_document_id
            self.default_infrastructure = None
        else:
            self.default_infrastructure = Process()
            self.default_infrastructure_document_id = None

    async def update_matched_agent_work_queues(self):
        if self.work_queue_prefix:
            if self.work_pool_name:
                matched_queues = await self.client.read_work_queues(
                    work_pool_name=self.work_pool_name,
                    work_queue_filter=WorkQueueFilter(
                        name=WorkQueueFilterName(startswith_=self.work_queue_prefix)
                    ),
                )
            else:
                matched_queues = await self.client.match_work_queues(
                    self.work_queue_prefix
                )
            matched_queues = set(q.name for q in matched_queues)
            if matched_queues != self.work_queues:
                new_queues = matched_queues - self.work_queues
                removed_queues = self.work_queues - matched_queues
                if new_queues:
                    self.logger.info(
                        f"Matched new work queues: {', '.join(new_queues)}"
                    )
                if removed_queues:
                    self.logger.info(
                        f"Work queues no longer matched: {', '.join(removed_queues)}"
                    )
            self.work_queues = matched_queues

    async def get_work_queues(self) -> AsyncIterator[WorkQueue]:
        """
        Loads the work queue objects corresponding to the agent's target work
        queues. If any of them don't exist, they are created.
        """

        # if the queue cache has not expired, yield queues from the cache
        now = pendulum.now("UTC")
        if (self._work_queue_cache_expiration or now) > now:
            for queue in self._work_queue_cache:
                yield queue
            return

        # otherwise clear the cache, set the expiration for 30 seconds, and
        # reload the work queues
        self._work_queue_cache.clear()
        self._work_queue_cache_expiration = now.add(seconds=30)

        await self.update_matched_agent_work_queues()

        for name in self.work_queues:
            try:
                work_queue = await self.client.read_work_queue_by_name(
                    work_pool_name=self.work_pool_name, name=name
                )
            except ObjectNotFound:
                # if the work queue wasn't found, create it
                if not self.work_queue_prefix:
                    # do not attempt to create work queues if the agent is polling for
                    # queues using a regex
                    try:
                        work_queue = await self.client.create_work_queue(
                            work_pool_name=self.work_pool_name, name=name
                        )
                        if self.work_pool_name:
                            self.logger.info(
                                f"Created work queue {name!r} in work pool"
                                f" {self.work_pool_name!r}."
                            )
                        else:
                            self.logger.info(f"Created work queue '{name}'.")

                    # if creating it raises an exception, it was probably just
                    # created by some other agent; rather than entering a re-read
                    # loop with new error handling, we log the exception and
                    # continue.
                    except Exception:
                        self.logger.exception(f"Failed to create work queue {name!r}.")
                        continue

            self._work_queue_cache.append(work_queue)
            yield work_queue

    async def get_and_submit_flow_runs(self) -> List[FlowRun]:
        """
        The principle method on agents. Queries for scheduled flow runs and submits
        them for execution in parallel.
        """
        if not self.started:
            raise RuntimeError(
                "Agent is not started. Use `async with PrefectAgent()...`"
            )

        self.logger.debug("Checking for scheduled flow runs...")

        before = pendulum.now("utc").add(
            seconds=self.prefetch_seconds or PREFECT_AGENT_PREFETCH_SECONDS.value()
        )

        submittable_runs: List[FlowRun] = []

        if self.work_pool_name:
            responses = await self.client.get_scheduled_flow_runs_for_work_pool(
                work_pool_name=self.work_pool_name,
                work_queue_names=[wq.name async for wq in self.get_work_queues()],
                scheduled_before=before,
            )
            submittable_runs.extend([response.flow_run for response in responses])

        else:
            # load runs from each work queue
            async for work_queue in self.get_work_queues():
                # print a nice message if the work queue is paused
                if work_queue.is_paused:
                    self.logger.info(
                        f"Work queue {work_queue.name!r} ({work_queue.id}) is paused."
                    )

                else:
                    try:
                        queue_runs = await self.client.get_runs_in_work_queue(
                            id=work_queue.id, limit=10, scheduled_before=before
                        )
                        submittable_runs.extend(queue_runs)
                    except ObjectNotFound:
                        self.logger.error(
                            f"Work queue {work_queue.name!r} ({work_queue.id}) not"
                            " found."
                        )
                    except Exception as exc:
                        self.logger.exception(exc)

            submittable_runs.sort(key=lambda run: run.next_scheduled_start_time)

        for flow_run in submittable_runs:
            # don't resubmit a run
            if flow_run.id in self.submitting_flow_run_ids:
                continue

            try:
                if self.limiter:
                    self.limiter.acquire_on_behalf_of_nowait(flow_run.id)
            except anyio.WouldBlock:
                self.logger.info(
                    f"Flow run limit reached; {self.limiter.borrowed_tokens} flow runs"
                    " in progress."
                )
                break
            else:
                self.logger.info(f"Submitting flow run '{flow_run.id}'")
                self.submitting_flow_run_ids.add(flow_run.id)
                self.task_group.start_soon(
                    self.submit_run,
                    flow_run,
                )

        return list(
            filter(lambda run: run.id in self.submitting_flow_run_ids, submittable_runs)
        )

    async def check_for_cancelled_flow_runs(self):
        if not self.started:
            raise RuntimeError(
                "Agent is not started. Use `async with PrefectAgent()...`"
            )

        self.logger.debug("Checking for cancelled flow runs...")

        work_queue_filter = (
            WorkQueueFilter(name=WorkQueueFilterName(any_=list(self.work_queues)))
            if self.work_queues
            else None
        )

        work_pool_filter = (
            WorkPoolFilter(name=WorkPoolFilterName(any_=[self.work_pool_name]))
            if self.work_pool_name
            else WorkPoolFilter(name=WorkPoolFilterName(any_=["default-agent-pool"]))
        )
        named_cancelling_flow_runs = await self.client.read_flow_runs(
            flow_run_filter=FlowRunFilter(
                state=FlowRunFilterState(
                    type=FlowRunFilterStateType(any_=[StateType.CANCELLED]),
                    name=FlowRunFilterStateName(any_=["Cancelling"]),
                ),
                # Avoid duplicate cancellation calls
                id=FlowRunFilterId(not_any_=list(self.cancelling_flow_run_ids)),
            ),
            work_pool_filter=work_pool_filter,
            work_queue_filter=work_queue_filter,
        )

        typed_cancelling_flow_runs = await self.client.read_flow_runs(
            flow_run_filter=FlowRunFilter(
                state=FlowRunFilterState(
                    type=FlowRunFilterStateType(any_=[StateType.CANCELLING]),
                ),
                # Avoid duplicate cancellation calls
                id=FlowRunFilterId(not_any_=list(self.cancelling_flow_run_ids)),
            ),
            work_pool_filter=work_pool_filter,
            work_queue_filter=work_queue_filter,
        )

        cancelling_flow_runs = named_cancelling_flow_runs + typed_cancelling_flow_runs

        if cancelling_flow_runs:
            self.logger.info(
                f"Found {len(cancelling_flow_runs)} flow runs awaiting cancellation."
            )

        for flow_run in cancelling_flow_runs:
            self.cancelling_flow_run_ids.add(flow_run.id)
            self.task_group.start_soon(self.cancel_run, flow_run)

        return cancelling_flow_runs

    async def cancel_run(self, flow_run: FlowRun) -> None:
        """
        Cancel a flow run by killing its infrastructure
        """
        if not flow_run.infrastructure_pid:
            self.logger.error(
                f"Flow run '{flow_run.id}' does not have an infrastructure pid"
                " attached. Cancellation cannot be guaranteed."
            )
            await self._mark_flow_run_as_cancelled(
                flow_run,
                state_updates={
                    "message": (
                        "This flow run is missing infrastructure tracking information"
                        " and cancellation cannot be guaranteed."
                    )
                },
            )
            return

        try:
            infrastructure = await self.get_infrastructure(flow_run)
        except Exception:
            self.logger.exception(
                f"Failed to get infrastructure for flow run '{flow_run.id}'. "
                "Flow run cannot be cancelled."
            )
            # Note: We leave this flow run in the cancelling set because it cannot be
            #       cancelled and this will prevent additional attempts.
            return

        if not hasattr(infrastructure, "kill"):
            self.logger.error(
                f"Flow run '{flow_run.id}' infrastructure {infrastructure.type!r} "
                "does not support killing created infrastructure. "
                "Cancellation cannot be guaranteed."
            )
            return

        self.logger.info(
            f"Killing {infrastructure.type} {flow_run.infrastructure_pid} for flow run "
            f"'{flow_run.id}'..."
        )
        try:
            await infrastructure.kill(flow_run.infrastructure_pid)
        except InfrastructureNotFound as exc:
            self.logger.warning(f"{exc} Marking flow run as cancelled.")
            await self._mark_flow_run_as_cancelled(flow_run)
        except InfrastructureNotAvailable as exc:
            self.logger.warning(f"{exc} Flow run cannot be cancelled by this agent.")
        except Exception:
            self.logger.exception(
                "Encountered exception while killing infrastructure for flow run "
                f"'{flow_run.id}'. Flow run may not be cancelled."
            )
            # We will try again on generic exceptions
            self.cancelling_flow_run_ids.remove(flow_run.id)
            return
        else:
            await self._mark_flow_run_as_cancelled(flow_run)
            self.logger.info(f"Cancelled flow run '{flow_run.id}'!")

    async def _mark_flow_run_as_cancelled(
        self, flow_run: FlowRun, state_updates: Optional[dict] = None
    ) -> None:
        state_updates = state_updates or {}
        state_updates.setdefault("name", "Cancelled")
        state_updates.setdefault("type", StateType.CANCELLED)
        state = flow_run.state.copy(update=state_updates)

        await self.client.set_flow_run_state(flow_run.id, state, force=True)

        # Do not remove the flow run from the cancelling set immediately because
        # the API caches responses for the `read_flow_runs` and we do not want to
        # duplicate cancellations.
        await self._schedule_task(
            60 * 10, self.cancelling_flow_run_ids.remove, flow_run.id
        )

    async def get_infrastructure(self, flow_run: FlowRun) -> Infrastructure:
        deployment = await self.client.read_deployment(flow_run.deployment_id)

        flow = await self.client.read_flow(deployment.flow_id)

        # overrides only apply when configuring known infra blocks
        if not deployment.infrastructure_document_id:
            if self.default_infrastructure:
                infra_block = self.default_infrastructure
            else:
                infra_document = await self.client.read_block_document(
                    self.default_infrastructure_document_id
                )
                infra_block = Block._from_block_document(infra_document)

            # Add flow run metadata to the infrastructure
            prepared_infrastructure = infra_block.prepare_for_flow_run(
                flow_run, deployment=deployment, flow=flow
            )
            return prepared_infrastructure

        ## get infra
        infra_document = await self.client.read_block_document(
            deployment.infrastructure_document_id
        )

        # this piece of logic applies any overrides that may have been set on the
        # deployment; overrides are defined as dot.delimited paths on possibly nested
        # attributes of the infrastructure block
        doc_dict = infra_document.dict()
        infra_dict = doc_dict.get("data", {})
        for override, value in (deployment.infra_overrides or {}).items():
            nested_fields = override.split(".")
            data = infra_dict
            for field in nested_fields[:-1]:
                data = data[field]

            # once we reach the end, set the value
            data[nested_fields[-1]] = value

        # reconstruct the infra block
        doc_dict["data"] = infra_dict
        infra_document = BlockDocument(**doc_dict)
        infrastructure_block = Block._from_block_document(infra_document)

        # TODO: Here the agent may update the infrastructure with agent-level settings

        # Add flow run metadata to the infrastructure
        prepared_infrastructure = infrastructure_block.prepare_for_flow_run(
            flow_run, deployment=deployment, flow=flow
        )

        return prepared_infrastructure

    async def submit_run(self, flow_run: FlowRun) -> None:
        """
        Submit a flow run to the infrastructure
        """
        ready_to_submit = await self._propose_pending_state(flow_run)

        if ready_to_submit:
            try:
                infrastructure = await self.get_infrastructure(flow_run)
            except Exception as exc:
                self.logger.exception(
                    f"Failed to get infrastructure for flow run '{flow_run.id}'."
                )
                await self._propose_failed_state(flow_run, exc)
                if self.limiter:
                    self.limiter.release_on_behalf_of(flow_run.id)
            else:
                # Wait for submission to be completed. Note that the submission function
                # may continue to run in the background after this exits.
                readiness_result = await self.task_group.start(
                    self._submit_run_and_capture_errors, flow_run, infrastructure
                )

                if readiness_result and not isinstance(readiness_result, Exception):
                    try:
                        await self.client.update_flow_run(
                            flow_run_id=flow_run.id,
                            infrastructure_pid=str(readiness_result),
                        )
                    except Exception:
                        self.logger.exception(
                            "An error occurred while setting the `infrastructure_pid`"
                            f" on flow run {flow_run.id!r}. The flow run will not be"
                            " cancellable."
                        )

                self.logger.info(f"Completed submission of flow run '{flow_run.id}'")

        else:
            # If the run is not ready to submit, release the concurrency slot
            if self.limiter:
                self.limiter.release_on_behalf_of(flow_run.id)

        self.submitting_flow_run_ids.remove(flow_run.id)

    async def _submit_run_and_capture_errors(
        self,
        flow_run: FlowRun,
        infrastructure: Infrastructure,
        task_status: anyio.abc.TaskStatus = None,
    ) -> Union[InfrastructureResult, Exception]:
        # Note: There is not a clear way to determine if task_status.started() has been
        #       called without peeking at the internal `_future`. Ideally we could just
        #       check if the flow run id has been removed from `submitting_flow_run_ids`
        #       but it is not so simple to guarantee that this coroutine yields back
        #       to `submit_run` to execute that line when exceptions are raised during
        #       submission.
        try:
            result = await infrastructure.run(task_status=task_status)
        except Exception as exc:
            if not task_status._future.done():
                # This flow run was being submitted and did not start successfully
                self.logger.exception(
                    f"Failed to submit flow run '{flow_run.id}' to infrastructure."
                )
                # Mark the task as started to prevent agent crash
                task_status.started(exc)
                await self._propose_crashed_state(
                    flow_run, "Flow run could not be submitted to infrastructure"
                )
            else:
                self.logger.exception(
                    f"An error occurred while monitoring flow run '{flow_run.id}'. "
                    "The flow run will not be marked as failed, but an issue may have "
                    "occurred."
                )
            return exc
        finally:
            if self.limiter:
                self.limiter.release_on_behalf_of(flow_run.id)

        if not task_status._future.done():
            self.logger.error(
                f"Infrastructure returned without reporting flow run '{flow_run.id}' "
                "as started or raising an error. This behavior is not expected and "
                "generally indicates improper implementation of infrastructure. The "
                "flow run will not be marked as failed, but an issue may have occurred."
            )
            # Mark the task as started to prevent agent crash
            task_status.started()

        if result.status_code != 0:
            await self._propose_crashed_state(
                flow_run,
                (
                    "Flow run infrastructure exited with non-zero status code"
                    f" {result.status_code}."
                ),
            )

        return result

    async def _propose_pending_state(self, flow_run: FlowRun) -> bool:
        state = flow_run.state
        try:
            state = await propose_state(self.client, Pending(), flow_run_id=flow_run.id)
        except Abort as exc:
            self.logger.info(
                (
                    f"Aborted submission of flow run '{flow_run.id}'. "
                    f"Server sent an abort signal: {exc}"
                ),
            )
            return False
        except Exception:
            self.logger.error(
                f"Failed to update state of flow run '{flow_run.id}'",
                exc_info=True,
            )
            return False

        if not state.is_pending():
            self.logger.info(
                (
                    f"Aborted submission of flow run '{flow_run.id}': "
                    f"Server returned a non-pending state {state.type.value!r}"
                ),
            )
            return False

        return True

    async def _propose_failed_state(self, flow_run: FlowRun, exc: Exception) -> None:
        try:
            await propose_state(
                self.client,
                await exception_to_failed_state(message="Submission failed.", exc=exc),
                flow_run_id=flow_run.id,
            )
        except Abort:
            # We've already failed, no need to note the abort but we don't want it to
            # raise in the agent process
            pass
        except Exception:
            self.logger.error(
                f"Failed to update state of flow run '{flow_run.id}'",
                exc_info=True,
            )

    async def _propose_crashed_state(self, flow_run: FlowRun, message: str) -> None:
        try:
            state = await propose_state(
                self.client,
                Crashed(message=message),
                flow_run_id=flow_run.id,
            )
        except Abort:
            # Flow run already marked as failed
            pass
        except Exception:
            self.logger.exception(f"Failed to update state of flow run '{flow_run.id}'")
        else:
            if state.is_crashed():
                self.logger.info(
                    f"Reported flow run '{flow_run.id}' as crashed: {message}"
                )

    async def _schedule_task(self, __in_seconds: int, fn, *args, **kwargs):
        """
        Schedule a background task to start after some time.

        These tasks will be run immediately when the agent exits instead of waiting.

        The function may be async or sync. Async functions will be awaited.
        """

        async def wrapper(task_status):
            # If we are shutting down, do not sleep; otherwise sleep until the scheduled
            # time or shutdown
            if self.started:
                with anyio.CancelScope() as scope:
                    self.scheduled_task_scopes.add(scope)
                    task_status.started()
                    await anyio.sleep(__in_seconds)

                self.scheduled_task_scopes.remove(scope)
            else:
                task_status.started()

            result = fn(*args, **kwargs)
            if inspect.iscoroutine(result):
                await result

        await self.task_group.start(wrapper)

    # Context management ---------------------------------------------------------------

    async def start(self):
        self.started = True
        self.task_group = anyio.create_task_group()
        self.limiter = (
            anyio.CapacityLimiter(self.limit) if self.limit is not None else None
        )
        self.client = get_client()
        await self.client.__aenter__()
        await self.task_group.__aenter__()

    async def shutdown(self, *exc_info):
        self.started = False
        # We must cancel scheduled task scopes before closing the task group
        for scope in self.scheduled_task_scopes:
            scope.cancel()
        await self.task_group.__aexit__(*exc_info)
        await self.client.__aexit__(*exc_info)
        self.task_group = None
        self.client = None
        self.submitting_flow_run_ids.clear()
        self.cancelling_flow_run_ids.clear()
        self.scheduled_task_scopes.clear()
        self._work_queue_cache_expiration = None
        self._work_queue_cache = []

    async def __aenter__(self):
        await self.start()
        return self

    async def __aexit__(self, *exc_info):
        await self.shutdown(*exc_info)

cancel_run async

Cancel a flow run by killing its infrastructure

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/agent.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
async def cancel_run(self, flow_run: FlowRun) -> None:
    """
    Cancel a flow run by killing its infrastructure
    """
    if not flow_run.infrastructure_pid:
        self.logger.error(
            f"Flow run '{flow_run.id}' does not have an infrastructure pid"
            " attached. Cancellation cannot be guaranteed."
        )
        await self._mark_flow_run_as_cancelled(
            flow_run,
            state_updates={
                "message": (
                    "This flow run is missing infrastructure tracking information"
                    " and cancellation cannot be guaranteed."
                )
            },
        )
        return

    try:
        infrastructure = await self.get_infrastructure(flow_run)
    except Exception:
        self.logger.exception(
            f"Failed to get infrastructure for flow run '{flow_run.id}'. "
            "Flow run cannot be cancelled."
        )
        # Note: We leave this flow run in the cancelling set because it cannot be
        #       cancelled and this will prevent additional attempts.
        return

    if not hasattr(infrastructure, "kill"):
        self.logger.error(
            f"Flow run '{flow_run.id}' infrastructure {infrastructure.type!r} "
            "does not support killing created infrastructure. "
            "Cancellation cannot be guaranteed."
        )
        return

    self.logger.info(
        f"Killing {infrastructure.type} {flow_run.infrastructure_pid} for flow run "
        f"'{flow_run.id}'..."
    )
    try:
        await infrastructure.kill(flow_run.infrastructure_pid)
    except InfrastructureNotFound as exc:
        self.logger.warning(f"{exc} Marking flow run as cancelled.")
        await self._mark_flow_run_as_cancelled(flow_run)
    except InfrastructureNotAvailable as exc:
        self.logger.warning(f"{exc} Flow run cannot be cancelled by this agent.")
    except Exception:
        self.logger.exception(
            "Encountered exception while killing infrastructure for flow run "
            f"'{flow_run.id}'. Flow run may not be cancelled."
        )
        # We will try again on generic exceptions
        self.cancelling_flow_run_ids.remove(flow_run.id)
        return
    else:
        await self._mark_flow_run_as_cancelled(flow_run)
        self.logger.info(f"Cancelled flow run '{flow_run.id}'!")

get_and_submit_flow_runs async

The principle method on agents. Queries for scheduled flow runs and submits them for execution in parallel.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/agent.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
async def get_and_submit_flow_runs(self) -> List[FlowRun]:
    """
    The principle method on agents. Queries for scheduled flow runs and submits
    them for execution in parallel.
    """
    if not self.started:
        raise RuntimeError(
            "Agent is not started. Use `async with PrefectAgent()...`"
        )

    self.logger.debug("Checking for scheduled flow runs...")

    before = pendulum.now("utc").add(
        seconds=self.prefetch_seconds or PREFECT_AGENT_PREFETCH_SECONDS.value()
    )

    submittable_runs: List[FlowRun] = []

    if self.work_pool_name:
        responses = await self.client.get_scheduled_flow_runs_for_work_pool(
            work_pool_name=self.work_pool_name,
            work_queue_names=[wq.name async for wq in self.get_work_queues()],
            scheduled_before=before,
        )
        submittable_runs.extend([response.flow_run for response in responses])

    else:
        # load runs from each work queue
        async for work_queue in self.get_work_queues():
            # print a nice message if the work queue is paused
            if work_queue.is_paused:
                self.logger.info(
                    f"Work queue {work_queue.name!r} ({work_queue.id}) is paused."
                )

            else:
                try:
                    queue_runs = await self.client.get_runs_in_work_queue(
                        id=work_queue.id, limit=10, scheduled_before=before
                    )
                    submittable_runs.extend(queue_runs)
                except ObjectNotFound:
                    self.logger.error(
                        f"Work queue {work_queue.name!r} ({work_queue.id}) not"
                        " found."
                    )
                except Exception as exc:
                    self.logger.exception(exc)

        submittable_runs.sort(key=lambda run: run.next_scheduled_start_time)

    for flow_run in submittable_runs:
        # don't resubmit a run
        if flow_run.id in self.submitting_flow_run_ids:
            continue

        try:
            if self.limiter:
                self.limiter.acquire_on_behalf_of_nowait(flow_run.id)
        except anyio.WouldBlock:
            self.logger.info(
                f"Flow run limit reached; {self.limiter.borrowed_tokens} flow runs"
                " in progress."
            )
            break
        else:
            self.logger.info(f"Submitting flow run '{flow_run.id}'")
            self.submitting_flow_run_ids.add(flow_run.id)
            self.task_group.start_soon(
                self.submit_run,
                flow_run,
            )

    return list(
        filter(lambda run: run.id in self.submitting_flow_run_ids, submittable_runs)
    )

get_work_queues async

Loads the work queue objects corresponding to the agent's target work queues. If any of them don't exist, they are created.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/agent.py
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
async def get_work_queues(self) -> AsyncIterator[WorkQueue]:
    """
    Loads the work queue objects corresponding to the agent's target work
    queues. If any of them don't exist, they are created.
    """

    # if the queue cache has not expired, yield queues from the cache
    now = pendulum.now("UTC")
    if (self._work_queue_cache_expiration or now) > now:
        for queue in self._work_queue_cache:
            yield queue
        return

    # otherwise clear the cache, set the expiration for 30 seconds, and
    # reload the work queues
    self._work_queue_cache.clear()
    self._work_queue_cache_expiration = now.add(seconds=30)

    await self.update_matched_agent_work_queues()

    for name in self.work_queues:
        try:
            work_queue = await self.client.read_work_queue_by_name(
                work_pool_name=self.work_pool_name, name=name
            )
        except ObjectNotFound:
            # if the work queue wasn't found, create it
            if not self.work_queue_prefix:
                # do not attempt to create work queues if the agent is polling for
                # queues using a regex
                try:
                    work_queue = await self.client.create_work_queue(
                        work_pool_name=self.work_pool_name, name=name
                    )
                    if self.work_pool_name:
                        self.logger.info(
                            f"Created work queue {name!r} in work pool"
                            f" {self.work_pool_name!r}."
                        )
                    else:
                        self.logger.info(f"Created work queue '{name}'.")

                # if creating it raises an exception, it was probably just
                # created by some other agent; rather than entering a re-read
                # loop with new error handling, we log the exception and
                # continue.
                except Exception:
                    self.logger.exception(f"Failed to create work queue {name!r}.")
                    continue

        self._work_queue_cache.append(work_queue)
        yield work_queue

submit_run async

Submit a flow run to the infrastructure

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/agent.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
async def submit_run(self, flow_run: FlowRun) -> None:
    """
    Submit a flow run to the infrastructure
    """
    ready_to_submit = await self._propose_pending_state(flow_run)

    if ready_to_submit:
        try:
            infrastructure = await self.get_infrastructure(flow_run)
        except Exception as exc:
            self.logger.exception(
                f"Failed to get infrastructure for flow run '{flow_run.id}'."
            )
            await self._propose_failed_state(flow_run, exc)
            if self.limiter:
                self.limiter.release_on_behalf_of(flow_run.id)
        else:
            # Wait for submission to be completed. Note that the submission function
            # may continue to run in the background after this exits.
            readiness_result = await self.task_group.start(
                self._submit_run_and_capture_errors, flow_run, infrastructure
            )

            if readiness_result and not isinstance(readiness_result, Exception):
                try:
                    await self.client.update_flow_run(
                        flow_run_id=flow_run.id,
                        infrastructure_pid=str(readiness_result),
                    )
                except Exception:
                    self.logger.exception(
                        "An error occurred while setting the `infrastructure_pid`"
                        f" on flow run {flow_run.id!r}. The flow run will not be"
                        " cancellable."
                    )

            self.logger.info(f"Completed submission of flow run '{flow_run.id}'")

    else:
        # If the run is not ready to submit, release the concurrency slot
        if self.limiter:
            self.limiter.release_on_behalf_of(flow_run.id)

    self.submitting_flow_run_ids.remove(flow_run.id)