Skip to content

prefect.engine

Client-side execution and orchestration of flows and tasks.

Engine process overview

Flows

  • The flow is called by the user or an existing flow run is executed in a new process.

    See Flow.__call__ and prefect.engine.__main__ (python -m prefect.engine)

  • A synchronous function acts as an entrypoint to the engine. The engine executes on a dedicated "global loop" thread. For asynchronous flow calls, we return a coroutine from the entrypoint so the user can enter the engine without blocking their event loop.

    See enter_flow_run_engine_from_flow_call, enter_flow_run_engine_from_subprocess

  • The thread that calls the entrypoint waits until orchestration of the flow run completes. This thread is referred to as the "user" thread and is usually the "main" thread. The thread is not blocked while waiting — it allows the engine to send work back to it. This allows us to send calls back to the user thread from the global loop thread.

    See wait_for_call_in_loop_thread and call_soon_in_waiting_thread

  • The asynchronous engine branches depending on if the flow run exists already and if there is a parent flow run in the current context.

    See create_then_begin_flow_run, create_and_begin_subflow_run, and retrieve_flow_then_begin_flow_run

  • The asynchronous engine prepares for execution of the flow run. This includes starting the task runner, preparing context, etc.

    See begin_flow_run

  • The flow run is orchestrated through states, calling the user's function as necessary. Generally the user's function is sent for execution on the user thread. If the flow function cannot be safely executed on the user thread, e.g. it is a synchronous child in an asynchronous parent it will be scheduled on a worker thread instead.

    See orchestrate_flow_run, call_soon_in_waiting_thread, call_soon_in_new_thread

Tasks

  • The task is called or submitted by the user. We require that this is always within a flow.

    See Task.__call__ and Task.submit

  • A synchronous function acts as an entrypoint to the engine. Unlike flow calls, this will not block until completion if submit was used.

    See enter_task_run_engine

  • A future is created for the task call. Creation of the task run and submission to the task runner is scheduled as a background task so submission of many tasks can occur concurrently.

    See create_task_run_future and create_task_run_then_submit

  • The engine branches depending on if a future, state, or result is requested. If a future is requested, it is returned immediately to the user thread. Otherwise, the engine will wait for the task run to complete and return the final state or result.

    See get_task_call_return_value

  • An engine function is submitted to the task runner. The task runner will schedule this function for execution on a worker. When executed, it will prepare for orchestration and wait for completion of the run.

    See create_task_run_then_submit and begin_task_run

  • The task run is orchestrated through states, calling the user's function as necessary. The user's function is always executed in a worker thread for isolation.

    See orchestrate_task_run, call_soon_in_new_thread

    _Ideally, for local and sequential task runners we would send the task run to the user thread as we do for flows. See #9855.

begin_flow_run async

Begins execution of a flow run; blocks until completion of the flow run

  • Starts a task runner
  • Determines the result storage block to use
  • Orchestrates the flow run (runs the user-function and generates tasks)
  • Waits for tasks to complete / shutsdown the task runner
  • Sets a terminal state for the flow run

Note that the flow_run contains a parameters attribute which is the serialized parameters sent to the backend while the parameters argument here should be the deserialized and validated dictionary of python objects.

Returns:

Type Description
State

The final state of the run

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
async def begin_flow_run(
    flow: Flow,
    flow_run: FlowRun,
    parameters: Dict[str, Any],
    client: PrefectClient,
    user_thread: threading.Thread,
) -> State:
    """
    Begins execution of a flow run; blocks until completion of the flow run

    - Starts a task runner
    - Determines the result storage block to use
    - Orchestrates the flow run (runs the user-function and generates tasks)
    - Waits for tasks to complete / shutsdown the task runner
    - Sets a terminal state for the flow run

    Note that the `flow_run` contains a `parameters` attribute which is the serialized
    parameters sent to the backend while the `parameters` argument here should be the
    deserialized and validated dictionary of python objects.

    Returns:
        The final state of the run
    """
    logger = flow_run_logger(flow_run, flow)

    log_prints = should_log_prints(flow)
    flow_run_context = PartialModel(FlowRunContext, log_prints=log_prints)

    async with AsyncExitStack() as stack:
        await stack.enter_async_context(
            report_flow_run_crashes(flow_run=flow_run, client=client, flow=flow)
        )

        # Create a task group for background tasks
        flow_run_context.background_tasks = await stack.enter_async_context(
            anyio.create_task_group()
        )

        # If the flow is async, we need to provide a portal so sync tasks can run
        flow_run_context.sync_portal = (
            stack.enter_context(start_blocking_portal()) if flow.isasync else None
        )

        task_runner = flow.task_runner.duplicate()
        if task_runner is NotImplemented:
            # Backwards compatibility; will not support concurrent flow runs
            task_runner = flow.task_runner
            logger.warning(
                f"Task runner {type(task_runner).__name__!r} does not implement the"
                " `duplicate` method and will fail if used for concurrent execution of"
                " the same flow."
            )

        logger.debug(
            f"Starting {type(flow.task_runner).__name__!r}; submitted tasks "
            f"will be run {CONCURRENCY_MESSAGES[flow.task_runner.concurrency_type]}..."
        )

        flow_run_context.task_runner = await stack.enter_async_context(
            task_runner.start()
        )

        flow_run_context.result_factory = await ResultFactory.from_flow(
            flow, client=client
        )

        if log_prints:
            stack.enter_context(patch_print())

        terminal_or_paused_state = await orchestrate_flow_run(
            flow,
            flow_run=flow_run,
            parameters=parameters,
            wait_for=None,
            client=client,
            partial_flow_run_context=flow_run_context,
            # Orchestration needs to be interruptible if it has a timeout
            interruptible=flow.timeout_seconds is not None,
            user_thread=user_thread,
        )

    if terminal_or_paused_state.is_paused():
        timeout = terminal_or_paused_state.state_details.pause_timeout
        msg = "Currently paused and suspending execution."
        if timeout:
            msg += f" Resume before {timeout.to_rfc3339_string()} to finish execution."
        logger.log(level=logging.INFO, msg=msg)
        await APILogHandler.aflush()

        return terminal_or_paused_state
    else:
        terminal_state = terminal_or_paused_state

    # If debugging, use the more complete `repr` than the usual `str` description
    display_state = repr(terminal_state) if PREFECT_DEBUG_MODE else str(terminal_state)

    logger.log(
        level=logging.INFO if terminal_state.is_completed() else logging.ERROR,
        msg=f"Finished in state {display_state}",
    )

    # When a "root" flow run finishes, flush logs so we do not have to rely on handling
    # during interpreter shutdown
    await APILogHandler.aflush()

    return terminal_state

begin_task_map async

Async entrypoint for task mapping

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
async def begin_task_map(
    task: Task,
    flow_run_context: FlowRunContext,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    return_type: EngineReturnType,
    task_runner: Optional[BaseTaskRunner],
) -> List[Union[PrefectFuture, Awaitable[PrefectFuture]]]:
    """Async entrypoint for task mapping"""
    # We need to resolve some futures to map over their data, collect the upstream
    # links beforehand to retain relationship tracking.
    task_inputs = {
        k: await collect_task_run_inputs(v, max_depth=0) for k, v in parameters.items()
    }

    # Resolve the top-level parameters in order to get mappable data of a known length.
    # Nested parameters will be resolved in each mapped child where their relationships
    # will also be tracked.
    parameters = await resolve_inputs(parameters, max_depth=1)

    # Ensure that any parameters in kwargs are expanded before this check
    parameters = explode_variadic_parameter(task.fn, parameters)

    iterable_parameters = {}
    static_parameters = {}
    annotated_parameters = {}
    for key, val in parameters.items():
        if isinstance(val, (allow_failure, quote)):
            # Unwrap annotated parameters to determine if they are iterable
            annotated_parameters[key] = val
            val = val.unwrap()

        if isinstance(val, unmapped):
            static_parameters[key] = val.value
        elif isiterable(val):
            iterable_parameters[key] = list(val)
        else:
            static_parameters[key] = val

    if not len(iterable_parameters):
        raise MappingMissingIterable(
            "No iterable parameters were received. Parameters for map must "
            f"include at least one iterable. Parameters: {parameters}"
        )

    iterable_parameter_lengths = {
        key: len(val) for key, val in iterable_parameters.items()
    }
    lengths = set(iterable_parameter_lengths.values())
    if len(lengths) > 1:
        raise MappingLengthMismatch(
            "Received iterable parameters with different lengths. Parameters for map"
            f" must all be the same length. Got lengths: {iterable_parameter_lengths}"
        )

    map_length = list(lengths)[0]

    task_runs = []
    for i in range(map_length):
        call_parameters = {key: value[i] for key, value in iterable_parameters.items()}
        call_parameters.update({key: value for key, value in static_parameters.items()})

        # Add default values for parameters; these are skipped earlier since they should
        # not be mapped over
        for key, value in get_parameter_defaults(task.fn).items():
            call_parameters.setdefault(key, value)

        # Re-apply annotations to each key again
        for key, annotation in annotated_parameters.items():
            call_parameters[key] = annotation.rewrap(call_parameters[key])

        # Collapse any previously exploded kwargs
        call_parameters = collapse_variadic_parameters(task.fn, call_parameters)

        task_runs.append(
            partial(
                get_task_call_return_value,
                task=task,
                flow_run_context=flow_run_context,
                parameters=call_parameters,
                wait_for=wait_for,
                return_type=return_type,
                task_runner=task_runner,
                extra_task_inputs=task_inputs,
            )
        )

    # Maintain the order of the task runs when using the sequential task runner
    runner = task_runner if task_runner else flow_run_context.task_runner
    if runner.concurrency_type == TaskConcurrencyType.SEQUENTIAL:
        return [await task_run() for task_run in task_runs]

    return await gather(*task_runs)

begin_task_run async

Entrypoint for task run execution.

This function is intended for submission to the task runner.

This method may be called from a worker so we ensure the settings context has been entered. For example, with a runner that is executing tasks in the same event loop, we will likely not enter the context again because the current context already matches:

main thread: --> Flow called with settings A --> begin_task_run executes same event loop --> Profile A matches and is not entered again

However, with execution on a remote environment, we are going to need to ensure the settings for the task run are respected by entering the context:

main thread: --> Flow called with settings A --> begin_task_run is scheduled on a remote worker, settings A is serialized remote worker: --> Remote worker imports Prefect (may not occur) --> Global settings is loaded with default settings --> begin_task_run executes on a different event loop than the flow --> Current settings is not set or does not match, settings A is entered

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
async def begin_task_run(
    task: Task,
    task_run: TaskRun,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    result_factory: ResultFactory,
    log_prints: bool,
    settings: prefect.context.SettingsContext,
):
    """
    Entrypoint for task run execution.

    This function is intended for submission to the task runner.

    This method may be called from a worker so we ensure the settings context has been
    entered. For example, with a runner that is executing tasks in the same event loop,
    we will likely not enter the context again because the current context already
    matches:

    main thread:
    --> Flow called with settings A
    --> `begin_task_run` executes same event loop
    --> Profile A matches and is not entered again

    However, with execution on a remote environment, we are going to need to ensure the
    settings for the task run are respected by entering the context:

    main thread:
    --> Flow called with settings A
    --> `begin_task_run` is scheduled on a remote worker, settings A is serialized
    remote worker:
    --> Remote worker imports Prefect (may not occur)
    --> Global settings is loaded with default settings
    --> `begin_task_run` executes on a different event loop than the flow
    --> Current settings is not set or does not match, settings A is entered
    """
    maybe_flow_run_context = prefect.context.FlowRunContext.get()

    async with AsyncExitStack() as stack:
        # The settings context may be null on a remote worker so we use the safe `.get`
        # method and compare it to the settings required for this task run
        if prefect.context.SettingsContext.get() != settings:
            stack.enter_context(settings)
            setup_logging()

        if maybe_flow_run_context:
            # Accessible if on a worker that is running in the same thread as the flow
            client = maybe_flow_run_context.client
            # Only run the task in an interruptible thread if it in the same thread as
            # the flow _and_ the flow run has a timeout attached. If the task is on a
            # worker, the flow run timeout will not be raised in the worker process.
            interruptible = maybe_flow_run_context.timeout_scope is not None
        else:
            # Otherwise, retrieve a new client
            client = await stack.enter_async_context(get_client())
            interruptible = False
            await stack.enter_async_context(anyio.create_task_group())

        await stack.enter_async_context(report_task_run_crashes(task_run, client))

        # TODO: Use the background tasks group to manage logging for this task

        if log_prints:
            stack.enter_context(patch_print())

        await check_api_reachable(
            client, f"Cannot orchestrate task run '{task_run.id}'"
        )
        try:
            state = await orchestrate_task_run(
                task=task,
                task_run=task_run,
                parameters=parameters,
                wait_for=wait_for,
                result_factory=result_factory,
                log_prints=log_prints,
                interruptible=interruptible,
                client=client,
            )

            if not maybe_flow_run_context:
                # When a a task run finishes on a remote worker flush logs to prevent
                # loss if the process exits
                await APILogHandler.aflush()

        except Abort as abort:
            # Task run probably already completed, fetch its state
            task_run = await client.read_task_run(task_run.id)

            if task_run.state.is_final():
                task_run_logger(task_run).info(
                    f"Task run '{task_run.id}' already finished."
                )
            else:
                # TODO: This is a concerning case; we should determine when this occurs
                #       1. This can occur when the flow run is not in a running state
                task_run_logger(task_run).warning(
                    f"Task run '{task_run.id}' received abort during orchestration: "
                    f"{abort} Task run is in {task_run.state.type.value} state."
                )
            state = task_run.state

        except Pause:
            task_run_logger(task_run).info(
                "Task run encountered a pause signal during orchestration."
            )
            state = Paused()

        return state

collect_task_run_inputs async

This function recurses through an expression to generate a set of any discernible task run inputs it finds in the data structure. It produces a set of all inputs found.

Examples:

>>> task_inputs = {
>>>    k: await collect_task_run_inputs(v) for k, v in parameters.items()
>>> }
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
async def collect_task_run_inputs(expr: Any, max_depth: int = -1) -> Set[TaskRunInput]:
    """
    This function recurses through an expression to generate a set of any discernible
    task run inputs it finds in the data structure. It produces a set of all inputs
    found.

    Examples:
        >>> task_inputs = {
        >>>    k: await collect_task_run_inputs(v) for k, v in parameters.items()
        >>> }
    """
    # TODO: This function needs to be updated to detect parameters and constants

    inputs = set()
    futures = set()

    def add_futures_and_states_to_inputs(obj):
        if isinstance(obj, PrefectFuture):
            # We need to wait for futures to be submitted before we can get the task
            # run id but we want to do so asynchronously
            futures.add(obj)
        elif is_state(obj):
            if obj.state_details.task_run_id:
                inputs.add(TaskRunResult(id=obj.state_details.task_run_id))
        # Expressions inside quotes should not be traversed
        elif isinstance(obj, quote):
            raise StopVisiting
        else:
            state = get_state_for_result(obj)
            if state and state.state_details.task_run_id:
                inputs.add(TaskRunResult(id=state.state_details.task_run_id))

    visit_collection(
        expr,
        visit_fn=add_futures_and_states_to_inputs,
        return_data=False,
        max_depth=max_depth,
    )

    await asyncio.gather(*[future._wait_for_submission() for future in futures])
    for future in futures:
        inputs.add(TaskRunResult(id=future.task_run.id))

    return inputs

create_and_begin_subflow_run async

Async entrypoint for flows calls within a flow run

Subflows differ from parent flows in that they - Resolve futures in passed parameters into values - Create a dummy task for representation in the parent flow - Retrieve default result storage from the parent flow rather than the server

Returns:

Type Description
Any

The final state of the run

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
@inject_client
async def create_and_begin_subflow_run(
    flow: Flow,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    return_type: EngineReturnType,
    client: PrefectClient,
    user_thread: threading.Thread,
) -> Any:
    """
    Async entrypoint for flows calls within a flow run

    Subflows differ from parent flows in that they
    - Resolve futures in passed parameters into values
    - Create a dummy task for representation in the parent flow
    - Retrieve default result storage from the parent flow rather than the server

    Returns:
        The final state of the run
    """
    parent_flow_run_context = FlowRunContext.get()
    parent_logger = get_run_logger(parent_flow_run_context)
    log_prints = should_log_prints(flow)
    terminal_state = None

    parent_logger.debug(f"Resolving inputs to {flow.name!r}")
    task_inputs = {k: await collect_task_run_inputs(v) for k, v in parameters.items()}

    if wait_for:
        task_inputs["wait_for"] = await collect_task_run_inputs(wait_for)

    rerunning = parent_flow_run_context.flow_run.run_count > 1

    # Generate a task in the parent flow run to represent the result of the subflow run
    dummy_task = Task(name=flow.name, fn=flow.fn, version=flow.version)
    parent_task_run = await client.create_task_run(
        task=dummy_task,
        flow_run_id=parent_flow_run_context.flow_run.id,
        dynamic_key=_dynamic_key_for_task_run(parent_flow_run_context, dummy_task),
        task_inputs=task_inputs,
        state=Pending(),
    )

    # Resolve any task futures in the input
    parameters = await resolve_inputs(parameters)

    if parent_task_run.state.is_final() and not (
        rerunning and not parent_task_run.state.is_completed()
    ):
        # Retrieve the most recent flow run from the database
        flow_runs = await client.read_flow_runs(
            flow_run_filter=FlowRunFilter(
                parent_task_run_id={"any_": [parent_task_run.id]}
            ),
            sort=FlowRunSort.EXPECTED_START_TIME_ASC,
        )
        flow_run = flow_runs[-1]

        # Set up variables required downstream
        terminal_state = flow_run.state
        logger = flow_run_logger(flow_run, flow)

    else:
        flow_run = await client.create_flow_run(
            flow,
            parameters=flow.serialize_parameters(parameters),
            parent_task_run_id=parent_task_run.id,
            state=parent_task_run.state if not rerunning else Pending(),
            tags=TagsContext.get().current_tags,
        )

        parent_logger.info(
            f"Created subflow run {flow_run.name!r} for flow {flow.name!r}"
        )

        logger = flow_run_logger(flow_run, flow)
        ui_url = PREFECT_UI_URL.value()
        if ui_url:
            logger.info(
                f"View at {ui_url}/flow-runs/flow-run/{flow_run.id}",
                extra={"send_to_api": False},
            )

        result_factory = await ResultFactory.from_flow(
            flow, client=parent_flow_run_context.client
        )

        if flow.should_validate_parameters:
            try:
                parameters = flow.validate_parameters(parameters)
            except Exception:
                message = "Validation of flow parameters failed with error:"
                logger.exception(message)
                terminal_state = await propose_state(
                    client,
                    state=await exception_to_failed_state(
                        message=message, result_factory=result_factory
                    ),
                    flow_run_id=flow_run.id,
                )

        if terminal_state is None or not terminal_state.is_final():
            async with AsyncExitStack() as stack:
                await stack.enter_async_context(
                    report_flow_run_crashes(flow_run=flow_run, client=client, flow=flow)
                )

                task_runner = flow.task_runner.duplicate()
                if task_runner is NotImplemented:
                    # Backwards compatibility; will not support concurrent flow runs
                    task_runner = flow.task_runner
                    logger.warning(
                        f"Task runner {type(task_runner).__name__!r} does not implement"
                        " the `duplicate` method and will fail if used for concurrent"
                        " execution of the same flow."
                    )

                await stack.enter_async_context(task_runner.start())

                if log_prints:
                    stack.enter_context(patch_print())

                terminal_state = await orchestrate_flow_run(
                    flow,
                    flow_run=flow_run,
                    parameters=parameters,
                    wait_for=wait_for,
                    # If the parent flow run has a timeout, then this one needs to be
                    # interruptible as well
                    interruptible=parent_flow_run_context.timeout_scope is not None,
                    client=client,
                    partial_flow_run_context=PartialModel(
                        FlowRunContext,
                        sync_portal=parent_flow_run_context.sync_portal,
                        task_runner=task_runner,
                        background_tasks=parent_flow_run_context.background_tasks,
                        result_factory=result_factory,
                        log_prints=log_prints,
                    ),
                    user_thread=user_thread,
                )

    # Display the full state (including the result) if debugging
    display_state = repr(terminal_state) if PREFECT_DEBUG_MODE else str(terminal_state)
    logger.log(
        level=logging.INFO if terminal_state.is_completed() else logging.ERROR,
        msg=f"Finished in state {display_state}",
    )

    # Track the subflow state so the parent flow can use it to determine its final state
    parent_flow_run_context.flow_run_states.append(terminal_state)

    if return_type == "state":
        return terminal_state
    elif return_type == "result":
        return await terminal_state.result(fetch=True)
    else:
        raise ValueError(f"Invalid return type for flow engine {return_type!r}.")

create_then_begin_flow_run async

Async entrypoint for flow calls

Creates the flow run in the backend, then enters the main flow run engine.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
@inject_client
async def create_then_begin_flow_run(
    flow: Flow,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    return_type: EngineReturnType,
    client: PrefectClient,
    user_thread: threading.Thread,
) -> Any:
    """
    Async entrypoint for flow calls

    Creates the flow run in the backend, then enters the main flow run engine.
    """
    # TODO: Returns a `State` depending on `return_type` and we can add an overload to
    #       the function signature to clarify this eventually.

    await check_api_reachable(client, "Cannot create flow run")

    state = Pending()
    if flow.should_validate_parameters:
        try:
            parameters = flow.validate_parameters(parameters)
        except Exception:
            state = await exception_to_failed_state(
                message="Validation of flow parameters failed with error:"
            )

    flow_run = await client.create_flow_run(
        flow,
        # Send serialized parameters to the backend
        parameters=flow.serialize_parameters(parameters),
        state=state,
        tags=TagsContext.get().current_tags,
    )

    engine_logger.info(f"Created flow run {flow_run.name!r} for flow {flow.name!r}")

    logger = flow_run_logger(flow_run, flow)

    ui_url = PREFECT_UI_URL.value()
    if ui_url:
        logger.info(
            f"View at {ui_url}/flow-runs/flow-run/{flow_run.id}",
            extra={"send_to_api": False},
        )

    if state.is_failed():
        logger.error(state.message)
        engine_logger.info(
            f"Flow run {flow_run.name!r} received invalid parameters and is marked as"
            " failed."
        )
    else:
        state = await begin_flow_run(
            flow=flow,
            flow_run=flow_run,
            parameters=parameters,
            client=client,
            user_thread=user_thread,
        )

    if return_type == "state":
        return state
    elif return_type == "result":
        return await state.result(fetch=True)
    else:
        raise ValueError(f"Invalid return type for flow engine {return_type!r}.")

enter_flow_run_engine_from_flow_call

Sync entrypoint for flow calls.

This function does the heavy lifting of ensuring we can get into an async context for flow run execution with minimal overhead.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def enter_flow_run_engine_from_flow_call(
    flow: Flow,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    return_type: EngineReturnType,
) -> Union[State, Awaitable[State]]:
    """
    Sync entrypoint for flow calls.

    This function does the heavy lifting of ensuring we can get into an async context
    for flow run execution with minimal overhead.
    """
    setup_logging()

    registry = PrefectObjectRegistry.get()
    if registry and registry.block_code_execution:
        engine_logger.warning(
            f"Script loading is in progress, flow {flow.name!r} will not be executed."
            " Consider updating the script to only call the flow if executed"
            f' directly:\n\n\tif __name__ == "__main__":\n\t\t{flow.fn.__name__}()'
        )
        return None

    if TaskRunContext.get():
        raise RuntimeError(
            "Flows cannot be run from within tasks. Did you mean to call this "
            "flow in a flow?"
        )

    parent_flow_run_context = FlowRunContext.get()
    is_subflow_run = parent_flow_run_context is not None

    if wait_for is not None and not is_subflow_run:
        raise ValueError("Only flows run as subflows can wait for dependencies.")

    begin_run = create_call(
        create_and_begin_subflow_run if is_subflow_run else create_then_begin_flow_run,
        flow=flow,
        parameters=parameters,
        wait_for=wait_for,
        return_type=return_type,
        client=parent_flow_run_context.client if is_subflow_run else None,
        user_thread=threading.current_thread(),
    )

    # On completion of root flows, wait for the global thread to ensure that
    # any work there is complete
    done_callbacks = (
        [create_call(wait_for_global_loop_exit)] if not is_subflow_run else None
    )

    # WARNING: You must define any context managers here to pass to our concurrency
    # api instead of entering them in here in the engine entrypoint. Otherwise, async
    # flows will not use the context as this function _exits_ to return an awaitable to
    # the user. Generally, you should enter contexts _within_ the async `begin_run`
    # instead but if you need to enter a context from the main thread you'll need to do
    # it here.
    contexts = [capture_sigterm()]

    if flow.isasync and (
        not is_subflow_run or (is_subflow_run and parent_flow_run_context.flow.isasync)
    ):
        # return a coro for the user to await if the flow is async
        # unless it is an async subflow called in a sync flow
        retval = from_async.wait_for_call_in_loop_thread(
            begin_run,
            done_callbacks=done_callbacks,
            contexts=contexts,
        )

    else:
        retval = from_sync.wait_for_call_in_loop_thread(
            begin_run,
            done_callbacks=done_callbacks,
            contexts=contexts,
        )

    return retval

enter_flow_run_engine_from_subprocess

Sync entrypoint for flow runs that have been submitted for execution by an agent

Differs from enter_flow_run_engine_from_flow_call in that we have a flow run id but not a flow object. The flow must be retrieved before execution can begin. Additionally, this assumes that the caller is always in a context without an event loop as this should be called from a fresh process.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def enter_flow_run_engine_from_subprocess(flow_run_id: UUID) -> State:
    """
    Sync entrypoint for flow runs that have been submitted for execution by an agent

    Differs from `enter_flow_run_engine_from_flow_call` in that we have a flow run id
    but not a flow object. The flow must be retrieved before execution can begin.
    Additionally, this assumes that the caller is always in a context without an event
    loop as this should be called from a fresh process.
    """

    # Ensure collections are imported and have the opportunity to register types before
    # loading the user code from the deployment
    prefect.plugins.load_prefect_collections()

    setup_logging()

    state = from_sync.wait_for_call_in_loop_thread(
        create_call(
            retrieve_flow_then_begin_flow_run,
            flow_run_id,
            user_thread=threading.current_thread(),
        ),
        contexts=[capture_sigterm()],
    )

    APILogHandler.flush()
    return state

enter_task_run_engine

Sync entrypoint for task calls

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
def enter_task_run_engine(
    task: Task,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    return_type: EngineReturnType,
    task_runner: Optional[BaseTaskRunner],
    mapped: bool,
) -> Union[PrefectFuture, Awaitable[PrefectFuture]]:
    """
    Sync entrypoint for task calls
    """

    flow_run_context = FlowRunContext.get()
    if not flow_run_context:
        raise RuntimeError(
            "Tasks cannot be run outside of a flow. To call the underlying task"
            " function outside of a flow use `task.fn()`."
        )

    if TaskRunContext.get():
        raise RuntimeError(
            "Tasks cannot be run from within tasks. Did you mean to call this "
            "task in a flow?"
        )

    if flow_run_context.timeout_scope and flow_run_context.timeout_scope.cancel_called:
        raise TimeoutError("Flow run timed out")

    begin_run = create_call(
        begin_task_map if mapped else get_task_call_return_value,
        task=task,
        flow_run_context=flow_run_context,
        parameters=parameters,
        wait_for=wait_for,
        return_type=return_type,
        task_runner=task_runner,
    )

    if task.isasync and flow_run_context.flow.isasync:
        # return a coro for the user to await if an async task in an async flow
        return from_async.wait_for_call_in_loop_thread(begin_run)
    else:
        return from_sync.wait_for_call_in_loop_thread(begin_run)

get_state_for_result

Get the state related to a result object.

link_state_to_result must have been called first.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
2205
2206
2207
2208
2209
2210
2211
2212
2213
def get_state_for_result(obj: Any) -> Optional[State]:
    """
    Get the state related to a result object.

    `link_state_to_result` must have been called first.
    """
    flow_run_context = FlowRunContext.get()
    if flow_run_context:
        return flow_run_context.task_run_results.get(id(obj))

Caches a link between a state and a result and its components using the id of the components to map to the state. The cache is persisted to the current flow run context since task relationships are limited to within a flow run.

This allows dependency tracking to occur when results are passed around. Note: Because id is used, we cannot cache links between singleton objects.

We only cache the relationship between components 1-layer deep. Example: Given the result [1, ["a","b"], ("c",)], the following elements will be mapped to the state: - [1, ["a","b"], ("c",)] - ["a","b"] - ("c",)

Note: the int `1` will not be mapped to the state because it is a singleton.

Other Notes: We do not hash the result because: - If changes are made to the object in the flow between task calls, we can still track that they are related. - Hashing can be expensive. - Not all objects are hashable.

We do not set an attribute, e.g. __prefect_state__, on the result because:

  • Mutating user's objects is dangerous.
  • Unrelated equality comparisons can break unexpectedly.
  • The field can be preserved on copy.
  • We cannot set this attribute on Python built-ins.
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
def link_state_to_result(state: State, result: Any) -> None:
    """
    Caches a link between a state and a result and its components using
    the `id` of the components to map to the state. The cache is persisted to the
    current flow run context since task relationships are limited to within a flow run.

    This allows dependency tracking to occur when results are passed around.
    Note: Because `id` is used, we cannot cache links between singleton objects.

    We only cache the relationship between components 1-layer deep.
    Example:
        Given the result [1, ["a","b"], ("c",)], the following elements will be
        mapped to the state:
        - [1, ["a","b"], ("c",)]
        - ["a","b"]
        - ("c",)

        Note: the int `1` will not be mapped to the state because it is a singleton.

    Other Notes:
    We do not hash the result because:
    - If changes are made to the object in the flow between task calls, we can still
      track that they are related.
    - Hashing can be expensive.
    - Not all objects are hashable.

    We do not set an attribute, e.g. `__prefect_state__`, on the result because:

    - Mutating user's objects is dangerous.
    - Unrelated equality comparisons can break unexpectedly.
    - The field can be preserved on copy.
    - We cannot set this attribute on Python built-ins.
    """

    flow_run_context = FlowRunContext.get()

    def link_if_trackable(obj: Any) -> None:
        """Track connection between a task run result and its associated state if it has a unique ID.

        We cannot track booleans, Ellipsis, None, NotImplemented, or the integers from -5 to 256
        because they are singletons.

        This function will mutate the State if the object is an untrackable type by setting the value
        for `State.state_details.untrackable_result` to `True`.

        """
        if (type(obj) in UNTRACKABLE_TYPES) or (
            isinstance(obj, int) and (-5 <= obj <= 256)
        ):
            state.state_details.untrackable_result = True
            return
        flow_run_context.task_run_results[id(obj)] = state

    if flow_run_context:
        visit_collection(expr=result, visit_fn=link_if_trackable, max_depth=1)

orchestrate_flow_run async

Executes a flow run.

Note on flow timeouts

Since async flows are run directly in the main event loop, timeout behavior will match that described by anyio. If the flow is awaiting something, it will immediately return; otherwise, the next time it awaits it will exit. Sync flows are being task runner in a worker thread, which cannot be interrupted. The worker thread will exit at the next task call. The worker thread also has access to the status of the cancellation scope at FlowRunContext.timeout_scope.cancel_called which allows it to raise a TimeoutError to respect the timeout.

Returns:

Type Description
State

The final state of the run

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
async def orchestrate_flow_run(
    flow: Flow,
    flow_run: FlowRun,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    interruptible: bool,
    client: PrefectClient,
    partial_flow_run_context: PartialModel[FlowRunContext],
    user_thread: threading.Thread,
) -> State:
    """
    Executes a flow run.

    Note on flow timeouts:
        Since async flows are run directly in the main event loop, timeout behavior will
        match that described by anyio. If the flow is awaiting something, it will
        immediately return; otherwise, the next time it awaits it will exit. Sync flows
        are being task runner in a worker thread, which cannot be interrupted. The worker
        thread will exit at the next task call. The worker thread also has access to the
        status of the cancellation scope at `FlowRunContext.timeout_scope.cancel_called`
        which allows it to raise a `TimeoutError` to respect the timeout.

    Returns:
        The final state of the run
    """

    logger = flow_run_logger(flow_run, flow)

    flow_run_context = None
    parent_flow_run_context = FlowRunContext.get()

    try:
        # Resolve futures in any non-data dependencies to ensure they are ready
        if wait_for is not None:
            await resolve_inputs({"wait_for": wait_for}, return_data=False)
    except UpstreamTaskError as upstream_exc:
        return await propose_state(
            client,
            Pending(name="NotReady", message=str(upstream_exc)),
            flow_run_id=flow_run.id,
            # if orchestrating a run already in a pending state, force orchestration to
            # update the state name
            force=flow_run.state.is_pending(),
        )

    state = await propose_state(client, Running(), flow_run_id=flow_run.id)

    # flag to ensure we only update the flow run name once
    run_name_set = False

    while state.is_running():
        waited_for_task_runs = False

        # Update the flow run to the latest data
        flow_run = await client.read_flow_run(flow_run.id)
        try:
            with partial_flow_run_context.finalize(
                flow=flow,
                flow_run=flow_run,
                client=client,
                parameters=parameters,
            ) as flow_run_context:
                # update flow run name
                if not run_name_set and flow.flow_run_name:
                    flow_run_name = _resolve_custom_flow_run_name(
                        flow=flow, parameters=parameters
                    )

                    await client.update_flow_run(
                        flow_run_id=flow_run.id, name=flow_run_name
                    )
                    logger.extra["flow_run_name"] = flow_run_name
                    logger.debug(
                        f"Renamed flow run {flow_run.name!r} to {flow_run_name!r}"
                    )
                    flow_run.name = flow_run_name
                    run_name_set = True

                args, kwargs = parameters_to_args_kwargs(flow.fn, parameters)
                logger.debug(
                    f"Executing flow {flow.name!r} for flow run {flow_run.name!r}..."
                )

                if PREFECT_DEBUG_MODE:
                    logger.debug(f"Executing {call_repr(flow.fn, *args, **kwargs)}")
                else:
                    logger.debug(
                        "Beginning execution...", extra={"state_message": True}
                    )

                flow_call = create_call(flow.fn, *args, **kwargs)

                # This check for a parent call is needed for cases where the engine
                # was entered directly during testing
                parent_call = get_current_call()

                if parent_call and (
                    not parent_flow_run_context
                    or (
                        parent_flow_run_context
                        and parent_flow_run_context.flow.isasync == flow.isasync
                    )
                ):
                    from_async.call_soon_in_waiting_thread(
                        flow_call, thread=user_thread, timeout=flow.timeout_seconds
                    )
                else:
                    from_async.call_soon_in_new_thread(
                        flow_call, timeout=flow.timeout_seconds
                    )

                result = await flow_call.aresult()

                waited_for_task_runs = await wait_for_task_runs_and_report_crashes(
                    flow_run_context.task_run_futures, client=client
                )
        except PausedRun as exc:
            # could get raised either via utility or by returning Paused from a task run
            # if a task run pauses, we set its state as the flow's state
            # to preserve reschedule and timeout behavior
            paused_flow_run = await client.read_flow_run(flow_run.id)
            if paused_flow_run.state.is_running():
                state = await propose_state(
                    client,
                    state=exc.state,
                    flow_run_id=flow_run.id,
                )

                return state
            paused_flow_run_state = paused_flow_run.state
            return paused_flow_run_state
        except CancelledError as exc:
            if not flow_call.timedout():
                # If the flow call was not cancelled by us; this is a crash
                raise
            # Construct a new exception as `TimeoutError`
            original = exc
            exc = TimeoutError()
            exc.__cause__ = original
            logger.exception("Encountered exception during execution:")
            terminal_state = await exception_to_failed_state(
                exc,
                message=f"Flow run exceeded timeout of {flow.timeout_seconds} seconds",
                result_factory=flow_run_context.result_factory,
                name="TimedOut",
            )
        except Exception:
            # Generic exception in user code
            logger.exception("Encountered exception during execution:")
            terminal_state = await exception_to_failed_state(
                message="Flow run encountered an exception.",
                result_factory=flow_run_context.result_factory,
            )
        else:
            if result is None:
                # All tasks and subflows are reference tasks if there is no return value
                # If there are no tasks, use `None` instead of an empty iterable
                result = (
                    flow_run_context.task_run_futures
                    + flow_run_context.task_run_states
                    + flow_run_context.flow_run_states
                ) or None

            terminal_state = await return_value_to_state(
                await resolve_futures_to_states(result),
                result_factory=flow_run_context.result_factory,
            )

        if not waited_for_task_runs:
            # An exception occurred that prevented us from waiting for task runs to
            # complete. Ensure that we wait for them before proposing a final state
            # for the flow run.
            await wait_for_task_runs_and_report_crashes(
                flow_run_context.task_run_futures, client=client
            )

        # Before setting the flow run state, store state.data using
        # block storage and send the resulting data document to the Prefect API instead.
        # This prevents the pickled return value of flow runs
        # from being sent to the Prefect API and stored in the Prefect database.
        # state.data is left as is, otherwise we would have to load
        # the data from block storage again after storing.
        state = await propose_state(
            client,
            state=terminal_state,
            flow_run_id=flow_run.id,
        )

        await _run_flow_hooks(flow=flow, flow_run=flow_run, state=state)

        if state.type != terminal_state.type and PREFECT_DEBUG_MODE:
            logger.debug(
                (
                    f"Received new state {state} when proposing final state"
                    f" {terminal_state}"
                ),
                extra={"send_to_api": False},
            )

        if not state.is_final() and not state.is_paused():
            logger.info(
                (
                    f"Received non-final state {state.name!r} when proposing final"
                    f" state {terminal_state.name!r} and will attempt to run again..."
                ),
                extra={"send_to_api": False},
            )
            # Attempt to enter a running state again
            state = await propose_state(client, Running(), flow_run_id=flow_run.id)

    return state

orchestrate_task_run async

Execute a task run

This function should be submitted to an task runner. We must construct the context here instead of receiving it already populated since we may be in a new environment.

Proposes a RUNNING state, then - if accepted, the task user function will be run - if rejected, the received state will be returned

When the user function is run, the result will be used to determine a final state - if an exception is encountered, it is trapped and stored in a FAILED state - otherwise, return_value_to_state is used to determine the state

If the final state is COMPLETED, we generate a cache key as specified by the task

The final state is then proposed - if accepted, this is the final state and will be returned - if rejected and a new final state is provided, it will be returned - if rejected and a non-final state is provided, we will attempt to enter a RUNNING state again

Returns:

Type Description
State

The final state of the run

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
async def orchestrate_task_run(
    task: Task,
    task_run: TaskRun,
    parameters: Dict[str, Any],
    wait_for: Optional[Iterable[PrefectFuture]],
    result_factory: ResultFactory,
    log_prints: bool,
    interruptible: bool,
    client: PrefectClient,
) -> State:
    """
    Execute a task run

    This function should be submitted to an task runner. We must construct the context
    here instead of receiving it already populated since we may be in a new environment.

    Proposes a RUNNING state, then
    - if accepted, the task user function will be run
    - if rejected, the received state will be returned

    When the user function is run, the result will be used to determine a final state
    - if an exception is encountered, it is trapped and stored in a FAILED state
    - otherwise, `return_value_to_state` is used to determine the state

    If the final state is COMPLETED, we generate a cache key as specified by the task

    The final state is then proposed
    - if accepted, this is the final state and will be returned
    - if rejected and a new final state is provided, it will be returned
    - if rejected and a non-final state is provided, we will attempt to enter a RUNNING
        state again

    Returns:
        The final state of the run
    """
    flow_run = await client.read_flow_run(task_run.flow_run_id)
    logger = task_run_logger(task_run, task=task, flow_run=flow_run)

    partial_task_run_context = PartialModel(
        TaskRunContext,
        task_run=task_run,
        task=task,
        client=client,
        result_factory=result_factory,
        log_prints=log_prints,
    )

    try:
        # Resolve futures in parameters into data
        resolved_parameters = await resolve_inputs(parameters)
        # Resolve futures in any non-data dependencies to ensure they are ready
        await resolve_inputs({"wait_for": wait_for}, return_data=False)
    except UpstreamTaskError as upstream_exc:
        return await propose_state(
            client,
            Pending(name="NotReady", message=str(upstream_exc)),
            task_run_id=task_run.id,
            # if orchestrating a run already in a pending state, force orchestration to
            # update the state name
            force=task_run.state.is_pending(),
        )

    # Generate the cache key to attach to proposed states
    # The cache key uses a TaskRunContext that does not include a `timeout_context``
    cache_key = (
        task.cache_key_fn(
            partial_task_run_context.finalize(parameters=resolved_parameters),
            resolved_parameters,
        )
        if task.cache_key_fn
        else None
    )

    task_run_context = partial_task_run_context.finalize(parameters=resolved_parameters)

    # Ignore the cached results for a cache key, default = false
    # Setting on task level overrules the Prefect setting (env var)
    refresh_cache = (
        task.refresh_cache
        if task.refresh_cache is not None
        else PREFECT_TASKS_REFRESH_CACHE.value()
    )

    # Emit an event to capture that the task run was in the `PENDING` state.
    last_event = _emit_task_run_state_change_event(
        task_run=task_run, initial_state=None, validated_state=task_run.state
    )
    last_state = task_run.state

    # Transition from `PENDING` -> `RUNNING`
    state = await propose_state(
        client,
        Running(
            state_details=StateDetails(cache_key=cache_key, refresh_cache=refresh_cache)
        ),
        task_run_id=task_run.id,
    )

    # Emit an event to capture the result of proposing a `RUNNING` state.
    last_event = _emit_task_run_state_change_event(
        task_run=task_run,
        initial_state=last_state,
        validated_state=state,
        follows=last_event,
    )
    last_state = state

    # flag to ensure we only update the task run name once
    run_name_set = False

    # Only run the task if we enter a `RUNNING` state
    while state.is_running():
        # Retrieve the latest metadata for the task run context
        task_run = await client.read_task_run(task_run.id)

        with task_run_context.copy(
            update={"task_run": task_run, "start_time": pendulum.now("UTC")}
        ):
            try:
                args, kwargs = parameters_to_args_kwargs(task.fn, resolved_parameters)
                # update task run name
                if not run_name_set and task.task_run_name:
                    task_run_name = _resolve_custom_task_run_name(
                        task=task, parameters=resolved_parameters
                    )
                    await client.set_task_run_name(
                        task_run_id=task_run.id, name=task_run_name
                    )
                    logger.extra["task_run_name"] = task_run_name
                    logger.debug(
                        f"Renamed task run {task_run.name!r} to {task_run_name!r}"
                    )
                    task_run.name = task_run_name
                    run_name_set = True

                if PREFECT_DEBUG_MODE.value():
                    logger.debug(f"Executing {call_repr(task.fn, *args, **kwargs)}")
                else:
                    logger.debug(
                        "Beginning execution...", extra={"state_message": True}
                    )

                call = from_async.call_soon_in_new_thread(
                    create_call(task.fn, *args, **kwargs), timeout=task.timeout_seconds
                )
                result = await call.aresult()

            except (CancelledError, asyncio.CancelledError) as exc:
                if not call.timedout():
                    # If the task call was not cancelled by us; this is a crash
                    raise
                # Construct a new exception as `TimeoutError`
                original = exc
                exc = TimeoutError()
                exc.__cause__ = original
                logger.exception("Encountered exception during execution:")
                terminal_state = await exception_to_failed_state(
                    exc,
                    message=(
                        f"Task run exceeded timeout of {task.timeout_seconds} seconds"
                    ),
                    result_factory=task_run_context.result_factory,
                    name="TimedOut",
                )
            except Exception as exc:
                logger.exception("Encountered exception during execution:")
                terminal_state = await exception_to_failed_state(
                    exc,
                    message="Task run encountered an exception",
                    result_factory=task_run_context.result_factory,
                )
            else:
                terminal_state = await return_value_to_state(
                    result,
                    result_factory=task_run_context.result_factory,
                )

                # for COMPLETED tasks, add the cache key and expiration
                if terminal_state.is_completed():
                    terminal_state.state_details.cache_expiration = (
                        (pendulum.now("utc") + task.cache_expiration)
                        if task.cache_expiration
                        else None
                    )
                    terminal_state.state_details.cache_key = cache_key

            state = await propose_state(client, terminal_state, task_run_id=task_run.id)
            last_event = _emit_task_run_state_change_event(
                task_run=task_run,
                initial_state=last_state,
                validated_state=state,
                follows=last_event,
            )
            last_state = state

            await _run_task_hooks(
                task=task,
                task_run=task_run,
                state=state,
            )

            if state.type != terminal_state.type and PREFECT_DEBUG_MODE:
                logger.debug(
                    (
                        f"Received new state {state} when proposing final state"
                        f" {terminal_state}"
                    ),
                    extra={"send_to_api": False},
                )

            if not state.is_final() and not state.is_paused():
                logger.info(
                    (
                        f"Received non-final state {state.name!r} when proposing final"
                        f" state {terminal_state.name!r} and will attempt to run"
                        " again..."
                    ),
                    extra={"send_to_api": False},
                )
                # Attempt to enter a running state again
                state = await propose_state(client, Running(), task_run_id=task_run.id)
                last_event = _emit_task_run_state_change_event(
                    task_run=task_run,
                    initial_state=last_state,
                    validated_state=state,
                    follows=last_event,
                )
                last_state = state

    # If debugging, use the more complete `repr` than the usual `str` description
    display_state = repr(state) if PREFECT_DEBUG_MODE else str(state)

    logger.log(
        level=logging.INFO if state.is_completed() else logging.ERROR,
        msg=f"Finished in state {display_state}",
    )

    return state

pause_flow_run async

Pauses the current flow run by stopping execution until resumed.

When called within a flow run, execution will block and no downstream tasks will run until the flow is resumed. Task runs that have already started will continue running. A timeout parameter can be passed that will fail the flow run if it has not been resumed within the specified time.

Parameters:

Name Type Description Default
flow_run_id UUID

a flow run id. If supplied, this function will attempt to pause the specified flow run outside of the flow run process. When paused, the flow run will continue execution until the NEXT task is orchestrated, at which point the flow will exit. Any tasks that have already started will run until completion. When resumed, the flow run will be rescheduled to finish execution. In order pause a flow run in this way, the flow needs to have an associated deployment and results need to be configured with the persist_results option.

None
timeout int

the number of seconds to wait for the flow to be resumed before failing. Defaults to 5 minutes (300 seconds). If the pause timeout exceeds any configured flow-level timeout, the flow might fail even after resuming.

300
poll_interval int

The number of seconds between checking whether the flow has been resumed. Defaults to 10 seconds.

10
reschedule bool

Flag that will reschedule the flow run if resumed. Instead of blocking execution, the flow will gracefully exit (with no result returned) instead. To use this flag, a flow needs to have an associated deployment and results need to be configured with the persist_results option.

False
key str

An optional key to prevent calling pauses more than once. This defaults to the number of pauses observed by the flow so far, and prevents pauses that use the "reschedule" option from running the same pause twice. A custom key can be supplied for custom pausing behavior.

None
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
@sync_compatible
async def pause_flow_run(
    flow_run_id: UUID = None,
    timeout: int = 300,
    poll_interval: int = 10,
    reschedule: bool = False,
    key: str = None,
):
    """
    Pauses the current flow run by stopping execution until resumed.

    When called within a flow run, execution will block and no downstream tasks will
    run until the flow is resumed. Task runs that have already started will continue
    running. A timeout parameter can be passed that will fail the flow run if it has not
    been resumed within the specified time.

    Args:
        flow_run_id: a flow run id. If supplied, this function will attempt to pause
            the specified flow run outside of the flow run process. When paused, the
            flow run will continue execution until the NEXT task is orchestrated, at
            which point the flow will exit. Any tasks that have already started will
            run until completion. When resumed, the flow run will be rescheduled to
            finish execution. In order pause a flow run in this way, the flow needs to
            have an associated deployment and results need to be configured with the
            `persist_results` option.
        timeout: the number of seconds to wait for the flow to be resumed before
            failing. Defaults to 5 minutes (300 seconds). If the pause timeout exceeds
            any configured flow-level timeout, the flow might fail even after resuming.
        poll_interval: The number of seconds between checking whether the flow has been
            resumed. Defaults to 10 seconds.
        reschedule: Flag that will reschedule the flow run if resumed. Instead of
            blocking execution, the flow will gracefully exit (with no result returned)
            instead. To use this flag, a flow needs to have an associated deployment and
            results need to be configured with the `persist_results` option.
        key: An optional key to prevent calling pauses more than once. This defaults to
            the number of pauses observed by the flow so far, and prevents pauses that
            use the "reschedule" option from running the same pause twice. A custom key
            can be supplied for custom pausing behavior.
    """
    if flow_run_id:
        return await _out_of_process_pause(
            flow_run_id=flow_run_id,
            timeout=timeout,
            reschedule=reschedule,
            key=key,
        )
    else:
        return await _in_process_pause(
            timeout=timeout, poll_interval=poll_interval, reschedule=reschedule, key=key
        )

propose_state async

Propose a new state for a flow run or task run, invoking Prefect orchestration logic.

If the proposed state is accepted, the provided state will be augmented with details and returned.

If the proposed state is rejected, a new state returned by the Prefect API will be returned.

If the proposed state results in a WAIT instruction from the Prefect API, the function will sleep and attempt to propose the state again.

If the proposed state results in an ABORT instruction from the Prefect API, an error will be raised.

Parameters:

Name Type Description Default
state State

a new state for the task or flow run

required
task_run_id UUID

an optional task run id, used when proposing task run states

None
flow_run_id UUID

an optional flow run id, used when proposing flow run states

None

Returns:

Type Description
State

a [State model][prefect.client.schemas.objects.State] representation of the flow or task run state

Raises:

Type Description
ValueError

if neither task_run_id or flow_run_id is provided

Abort

if an ABORT instruction is received from the Prefect API

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
async def propose_state(
    client: PrefectClient,
    state: State,
    force: bool = False,
    task_run_id: UUID = None,
    flow_run_id: UUID = None,
) -> State:
    """
    Propose a new state for a flow run or task run, invoking Prefect orchestration logic.

    If the proposed state is accepted, the provided `state` will be augmented with
     details and returned.

    If the proposed state is rejected, a new state returned by the Prefect API will be
    returned.

    If the proposed state results in a WAIT instruction from the Prefect API, the
    function will sleep and attempt to propose the state again.

    If the proposed state results in an ABORT instruction from the Prefect API, an
    error will be raised.

    Args:
        state: a new state for the task or flow run
        task_run_id: an optional task run id, used when proposing task run states
        flow_run_id: an optional flow run id, used when proposing flow run states

    Returns:
        a [State model][prefect.client.schemas.objects.State] representation of the
            flow or task run state

    Raises:
        ValueError: if neither task_run_id or flow_run_id is provided
        prefect.exceptions.Abort: if an ABORT instruction is received from
            the Prefect API
    """

    # Determine if working with a task run or flow run
    if not task_run_id and not flow_run_id:
        raise ValueError("You must provide either a `task_run_id` or `flow_run_id`")

    # Handle task and sub-flow tracing
    if state.is_final():
        if isinstance(state.data, BaseResult) and state.data.has_cached_object():
            # Avoid fetching the result unless it is cached, otherwise we defeat
            # the purpose of disabling `cache_result_in_memory`
            result = await state.result(raise_on_failure=False, fetch=True)
        else:
            result = state.data

        link_state_to_result(state, result)

    # Handle repeated WAITs in a loop instead of recursively, to avoid
    # reaching max recursion depth in extreme cases.
    async def set_state_and_handle_waits(set_state_func) -> OrchestrationResult:
        response = await set_state_func()
        while response.status == SetStateStatus.WAIT:
            engine_logger.debug(
                f"Received wait instruction for {response.details.delay_seconds}s: "
                f"{response.details.reason}"
            )
            await anyio.sleep(response.details.delay_seconds)
            response = await set_state_func()
        return response

    # Attempt to set the state
    if task_run_id:
        set_state = partial(client.set_task_run_state, task_run_id, state, force=force)
        response = await set_state_and_handle_waits(set_state)
    elif flow_run_id:
        set_state = partial(client.set_flow_run_state, flow_run_id, state, force=force)
        response = await set_state_and_handle_waits(set_state)
    else:
        raise ValueError(
            "Neither flow run id or task run id were provided. At least one must "
            "be given."
        )

    # Parse the response to return the new state
    if response.status == SetStateStatus.ACCEPT:
        # Update the state with the details if provided
        state.id = response.state.id
        state.timestamp = response.state.timestamp
        if response.state.state_details:
            state.state_details = response.state.state_details
        return state

    elif response.status == SetStateStatus.ABORT:
        raise prefect.exceptions.Abort(response.details.reason)

    elif response.status == SetStateStatus.REJECT:
        if response.state.is_paused():
            raise Pause(response.details.reason)
        return response.state

    else:
        raise ValueError(
            f"Received unexpected `SetStateStatus` from server: {response.status!r}"
        )

report_flow_run_crashes async

Detect flow run crashes during this context and update the run to a proper final state.

This context must reraise the exception to properly exit the run.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
@asynccontextmanager
async def report_flow_run_crashes(flow_run: FlowRun, client: PrefectClient, flow: Flow):
    """
    Detect flow run crashes during this context and update the run to a proper final
    state.

    This context _must_ reraise the exception to properly exit the run.
    """

    try:
        yield
    except (Abort, Pause):
        # Do not capture internal signals as crashes
        raise
    except BaseException as exc:
        state = await exception_to_crashed_state(exc)
        logger = flow_run_logger(flow_run)
        with anyio.CancelScope(shield=True):
            logger.error(f"Crash detected! {state.message}")
            logger.debug("Crash details:", exc_info=exc)
            flow_run_state = await propose_state(client, state, flow_run_id=flow_run.id)
            engine_logger.debug(
                f"Reported crashed flow run {flow_run.name!r} successfully!"
            )

            # Only `on_crashed` and `on_cancellation` flow run state change hooks can be called here.
            # We call the hooks after the state change proposal to `CRASHED` is validated
            # or rejected (if it is in a `CANCELLING` state).
            await _run_flow_hooks(
                flow=flow,
                flow_run=flow_run,
                state=flow_run_state,
            )

        # Reraise the exception
        raise

report_task_run_crashes async

Detect task run crashes during this context and update the run to a proper final state.

This context must reraise the exception to properly exit the run.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
@asynccontextmanager
async def report_task_run_crashes(task_run: TaskRun, client: PrefectClient):
    """
    Detect task run crashes during this context and update the run to a proper final
    state.

    This context _must_ reraise the exception to properly exit the run.
    """
    try:
        yield
    except (Abort, Pause):
        # Do not capture internal signals as crashes
        raise
    except BaseException as exc:
        state = await exception_to_crashed_state(exc)
        logger = task_run_logger(task_run)
        with anyio.CancelScope(shield=True):
            logger.error(f"Crash detected! {state.message}")
            logger.debug("Crash details:", exc_info=exc)
            await client.set_task_run_state(
                state=state,
                task_run_id=task_run.id,
                force=True,
            )
            engine_logger.debug(
                f"Reported crashed task run {task_run.name!r} successfully!"
            )

        # Reraise the exception
        raise

resolve_inputs async

Resolve any Quote, PrefectFuture, or State types nested in parameters into data.

Returns:

Type Description
Dict[str, Any]

A copy of the parameters with resolved data

Raises:

Type Description
UpstreamTaskError

If any of the upstream states are not COMPLETED

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
async def resolve_inputs(
    parameters: Dict[str, Any], return_data: bool = True, max_depth: int = -1
) -> Dict[str, Any]:
    """
    Resolve any `Quote`, `PrefectFuture`, or `State` types nested in parameters into
    data.

    Returns:
        A copy of the parameters with resolved data

    Raises:
        UpstreamTaskError: If any of the upstream states are not `COMPLETED`
    """

    futures = set()
    states = set()
    result_by_state = {}

    if not parameters:
        return {}

    def collect_futures_and_states(expr, context):
        # Expressions inside quotes should not be traversed
        if isinstance(context.get("annotation"), quote):
            raise StopVisiting()

        if isinstance(expr, PrefectFuture):
            futures.add(expr)
        if is_state(expr):
            states.add(expr)

        return expr

    visit_collection(
        parameters,
        visit_fn=collect_futures_and_states,
        return_data=False,
        max_depth=max_depth,
        context={},
    )

    # Wait for all futures so we do not block when we retrieve the state in `resolve_input`
    states.update(await asyncio.gather(*[future._wait() for future in futures]))

    # Only retrieve the result if requested as it may be expensive
    if return_data:
        finished_states = [state for state in states if state.is_final()]

        state_results = await asyncio.gather(
            *[
                state.result(raise_on_failure=False, fetch=True)
                for state in finished_states
            ]
        )

        for state, result in zip(finished_states, state_results):
            result_by_state[state] = result

    def resolve_input(expr, context):
        state = None

        # Expressions inside quotes should not be modified
        if isinstance(context.get("annotation"), quote):
            raise StopVisiting()

        if isinstance(expr, PrefectFuture):
            state = expr._final_state
        elif is_state(expr):
            state = expr
        else:
            return expr

        # Do not allow uncompleted upstreams except failures when `allow_failure` has
        # been used
        if not state.is_completed() and not (
            # TODO: Note that the contextual annotation here is only at the current level
            #       if `allow_failure` is used then another annotation is used, this will
            #       incorrectly evaluate to false — to resolve this, we must track all
            #       annotations wrapping the current expression but this is not yet
            #       implemented.
            isinstance(context.get("annotation"), allow_failure)
            and state.is_failed()
        ):
            raise UpstreamTaskError(
                f"Upstream task run '{state.state_details.task_run_id}' did not reach a"
                " 'COMPLETED' state."
            )

        return result_by_state.get(state)

    resolved_parameters = {}
    for parameter, value in parameters.items():
        try:
            resolved_parameters[parameter] = visit_collection(
                value,
                visit_fn=resolve_input,
                return_data=return_data,
                # we're manually going 1 layer deeper here
                max_depth=max_depth - 1,
                remove_annotations=True,
                context={},
            )
        except UpstreamTaskError:
            raise
        except Exception as exc:
            raise PrefectException(
                f"Failed to resolve inputs in parameter {parameter!r}. If your"
                " parameter type is not supported, consider using the `quote`"
                " annotation to skip resolution of inputs."
            ) from exc

    return resolved_parameters

resume_flow_run async

Resumes a paused flow.

Parameters:

Name Type Description Default
flow_run_id

the flow_run_id to resume

required
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
@sync_compatible
async def resume_flow_run(flow_run_id):
    """
    Resumes a paused flow.

    Args:
        flow_run_id: the flow_run_id to resume
    """
    client = get_client()
    flow_run = await client.read_flow_run(flow_run_id)

    if not flow_run.state.is_paused():
        raise NotPausedError("Cannot resume a run that isn't paused!")

    response = await client.resume_flow_run(flow_run_id)

    if response.status == SetStateStatus.REJECT:
        if response.state.type == StateType.FAILED:
            raise FlowPauseTimeout("Flow run can no longer be resumed.")
        else:
            raise RuntimeError(f"Cannot resume this run: {response.details.reason}")

retrieve_flow_then_begin_flow_run async

Async entrypoint for flow runs that have been submitted for execution by an agent

  • Retrieves the deployment information
  • Loads the flow object using deployment information
  • Updates the flow run version
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/engine.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
@inject_client
async def retrieve_flow_then_begin_flow_run(
    flow_run_id: UUID,
    client: PrefectClient,
    user_thread: threading.Thread,
) -> State:
    """
    Async entrypoint for flow runs that have been submitted for execution by an agent

    - Retrieves the deployment information
    - Loads the flow object using deployment information
    - Updates the flow run version
    """
    flow_run = await client.read_flow_run(flow_run_id)
    try:
        flow = await load_flow_from_flow_run(flow_run, client=client)
    except Exception:
        message = "Flow could not be retrieved from deployment."
        flow_run_logger(flow_run).exception(message)
        state = await exception_to_failed_state(message=message)
        await client.set_flow_run_state(
            state=state, flow_run_id=flow_run_id, force=True
        )
        return state

    # Update the flow run policy defaults to match settings on the flow
    # Note: Mutating the flow run object prevents us from performing another read
    #       operation if these properties are used by the client downstream
    if flow_run.empirical_policy.retry_delay is None:
        flow_run.empirical_policy.retry_delay = flow.retry_delay_seconds

    if flow_run.empirical_policy.retries is None:
        flow_run.empirical_policy.retries = flow.retries

    await client.update_flow_run(
        flow_run_id=flow_run_id,
        flow_version=flow.version,
        empirical_policy=flow_run.empirical_policy,
    )

    if flow.should_validate_parameters:
        failed_state = None
        try:
            parameters = flow.validate_parameters(flow_run.parameters)
        except Exception:
            message = "Validation of flow parameters failed with error: "
            flow_run_logger(flow_run).exception(message)
            failed_state = await exception_to_failed_state(message=message)

        if failed_state is not None:
            await propose_state(
                client,
                state=failed_state,
                flow_run_id=flow_run_id,
            )
            return failed_state
    else:
        parameters = flow_run.parameters

    # Ensure default values are populated
    parameters = {**get_parameter_defaults(flow.fn), **parameters}

    return await begin_flow_run(
        flow=flow,
        flow_run=flow_run,
        parameters=parameters,
        client=client,
        user_thread=user_thread,
    )