Skip to content

prefect.flows

Module containing the base workflow class and decorator - for most use cases, using the @flow decorator is preferred.

Flow

Bases: Generic[P, R]

A Prefect workflow definition.

Note

We recommend using the @flow decorator for most use-cases.

Wraps a function with an entrypoint to the Prefect engine. To preserve the input and output types, we use the generic type variables P and R for "Parameters" and "Returns" respectively.

Parameters:

Name Type Description Default
fn Callable[P, R]

The function defining the workflow.

required
name Optional[str]

An optional name for the flow; if not provided, the name will be inferred from the given function.

None
version Optional[str]

An optional version string for the flow; if not provided, we will attempt to create a version string as a hash of the file containing the wrapped function; if the file cannot be located, the version will be null.

None
flow_run_name Optional[Union[Callable[[], str], str]]

An optional name to distinguish runs of this flow; this name can be provided as a string template with the flow's parameters as variables, or a function that returns a string.

None
task_runner Union[Type[BaseTaskRunner], BaseTaskRunner]

An optional task runner to use for task execution within the flow; if not provided, a ConcurrentTaskRunner will be used.

ConcurrentTaskRunner
description str

An optional string description for the flow; if not provided, the description will be pulled from the docstring for the decorated function.

None
timeout_seconds Union[int, float]

An optional number of seconds indicating a maximum runtime for the flow. If the flow exceeds this runtime, it will be marked as failed. Flow execution may continue until the next task is called.

None
validate_parameters bool

By default, parameters passed to flows are validated by Pydantic. This will check that input values conform to the annotated types on the function. Where possible, values will be coerced into the correct type; for example, if a parameter is defined as x: int and "5" is passed, it will be resolved to 5. If set to False, no validation will be performed on flow parameters.

True
retries Optional[int]

An optional number of times to retry on flow run failure.

None
retry_delay_seconds Optional[Union[int, float]]

An optional number of seconds to wait before retrying the flow after failure. This is only applicable if retries is nonzero.

None
persist_result Optional[bool]

An optional toggle indicating whether the result of this flow should be persisted to result storage. Defaults to None, which indicates that Prefect should choose whether the result should be persisted depending on the features being used.

None
result_storage Optional[ResultStorage]

An optional block to use to persist the result of this flow. This value will be used as the default for any tasks in this flow. If not provided, the local file system will be used unless called as a subflow, at which point the default will be loaded from the parent flow.

None
result_serializer Optional[ResultSerializer]

An optional serializer to use to serialize the result of this flow for persistence. This value will be used as the default for any tasks in this flow. If not provided, the value of PREFECT_RESULTS_DEFAULT_SERIALIZER will be used unless called as a subflow, at which point the default will be loaded from the parent flow.

None
on_failure Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of callables to run when the flow enters a failed state.

None
on_completion Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of callables to run when the flow enters a completed state.

None
on_cancellation Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of callables to run when the flow enters a cancelling state.

None
on_crashed Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of callables to run when the flow enters a crashed state.

None
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
@PrefectObjectRegistry.register_instances
class Flow(Generic[P, R]):
    """
    A Prefect workflow definition.

    !!! note
        We recommend using the [`@flow` decorator][prefect.flows.flow] for most use-cases.

    Wraps a function with an entrypoint to the Prefect engine. To preserve the input
    and output types, we use the generic type variables `P` and `R` for "Parameters" and
    "Returns" respectively.

    Args:
        fn: The function defining the workflow.
        name: An optional name for the flow; if not provided, the name will be inferred
            from the given function.
        version: An optional version string for the flow; if not provided, we will
            attempt to create a version string as a hash of the file containing the
            wrapped function; if the file cannot be located, the version will be null.
        flow_run_name: An optional name to distinguish runs of this flow; this name can
            be provided as a string template with the flow's parameters as variables,
            or a function that returns a string.
        task_runner: An optional task runner to use for task execution within the flow;
            if not provided, a `ConcurrentTaskRunner` will be used.
        description: An optional string description for the flow; if not provided, the
            description will be pulled from the docstring for the decorated function.
        timeout_seconds: An optional number of seconds indicating a maximum runtime for
            the flow. If the flow exceeds this runtime, it will be marked as failed.
            Flow execution may continue until the next task is called.
        validate_parameters: By default, parameters passed to flows are validated by
            Pydantic. This will check that input values conform to the annotated types
            on the function. Where possible, values will be coerced into the correct
            type; for example, if a parameter is defined as `x: int` and "5" is passed,
            it will be resolved to `5`. If set to `False`, no validation will be
            performed on flow parameters.
        retries: An optional number of times to retry on flow run failure.
        retry_delay_seconds: An optional number of seconds to wait before retrying the
            flow after failure. This is only applicable if `retries` is nonzero.
        persist_result: An optional toggle indicating whether the result of this flow
            should be persisted to result storage. Defaults to `None`, which indicates
            that Prefect should choose whether the result should be persisted depending on
            the features being used.
        result_storage: An optional block to use to persist the result of this flow.
            This value will be used as the default for any tasks in this flow.
            If not provided, the local file system will be used unless called as
            a subflow, at which point the default will be loaded from the parent flow.
        result_serializer: An optional serializer to use to serialize the result of this
            flow for persistence. This value will be used as the default for any tasks
            in this flow. If not provided, the value of `PREFECT_RESULTS_DEFAULT_SERIALIZER`
            will be used unless called as a subflow, at which point the default will be
            loaded from the parent flow.
        on_failure: An optional list of callables to run when the flow enters a failed state.
        on_completion: An optional list of callables to run when the flow enters a completed state.
        on_cancellation: An optional list of callables to run when the flow enters a cancelling state.
        on_crashed: An optional list of callables to run when the flow enters a crashed state.
    """

    # NOTE: These parameters (types, defaults, and docstrings) should be duplicated
    #       exactly in the @flow decorator
    def __init__(
        self,
        fn: Callable[P, R],
        name: Optional[str] = None,
        version: Optional[str] = None,
        flow_run_name: Optional[Union[Callable[[], str], str]] = None,
        retries: Optional[int] = None,
        retry_delay_seconds: Optional[Union[int, float]] = None,
        task_runner: Union[Type[BaseTaskRunner], BaseTaskRunner] = ConcurrentTaskRunner,
        description: str = None,
        timeout_seconds: Union[int, float] = None,
        validate_parameters: bool = True,
        persist_result: Optional[bool] = None,
        result_storage: Optional[ResultStorage] = None,
        result_serializer: Optional[ResultSerializer] = None,
        cache_result_in_memory: bool = True,
        log_prints: Optional[bool] = None,
        on_completion: Optional[
            List[Callable[[FlowSchema, FlowRun, State], None]]
        ] = None,
        on_failure: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
        on_cancellation: Optional[
            List[Callable[[FlowSchema, FlowRun, State], None]]
        ] = None,
        on_crashed: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
    ):
        if name is not None and not isinstance(name, str):
            raise TypeError(
                "Expected string for flow parameter 'name'; got {} instead. {}".format(
                    type(name).__name__,
                    (
                        "Perhaps you meant to call it? e.g."
                        " '@flow(name=get_flow_run_name())'"
                        if callable(name)
                        else ""
                    ),
                )
            )

        # Validate if hook passed is list and contains callables
        hook_categories = [on_completion, on_failure, on_cancellation, on_crashed]
        hook_names = ["on_completion", "on_failure", "on_cancellation", "on_crashed"]
        for hooks, hook_name in zip(hook_categories, hook_names):
            if hooks is not None:
                if not hooks:
                    raise ValueError(f"Empty list passed for '{hook_name}'")
                try:
                    hooks = list(hooks)
                except TypeError:
                    raise TypeError(
                        f"Expected iterable for '{hook_name}'; got"
                        f" {type(hooks).__name__} instead. Please provide a list of"
                        f" hooks to '{hook_name}':\n\n"
                        f"@flow({hook_name}=[hook1, hook2])\ndef"
                        " my_flow():\n\tpass"
                    )

                for hook in hooks:
                    if not callable(hook):
                        raise TypeError(
                            f"Expected callables in '{hook_name}'; got"
                            f" {type(hook).__name__} instead. Please provide a list of"
                            f" hooks to '{hook_name}':\n\n"
                            f"@flow({hook_name}=[hook1, hook2])\ndef"
                            " my_flow():\n\tpass"
                        )

        if not callable(fn):
            raise TypeError("'fn' must be callable")

        # Validate name if given
        if name:
            raise_on_name_with_banned_characters(name)

        self.name = name or fn.__name__.replace("_", "-")

        if flow_run_name is not None:
            if not isinstance(flow_run_name, str) and not callable(flow_run_name):
                raise TypeError(
                    "Expected string or callable for 'flow_run_name'; got"
                    f" {type(flow_run_name).__name__} instead."
                )
        self.flow_run_name = flow_run_name

        task_runner = task_runner or ConcurrentTaskRunner()
        self.task_runner = (
            task_runner() if isinstance(task_runner, type) else task_runner
        )

        self.log_prints = log_prints

        self.description = description or inspect.getdoc(fn)
        update_wrapper(self, fn)
        self.fn = fn
        self.isasync = is_async_fn(self.fn)

        raise_for_reserved_arguments(self.fn, ["return_state", "wait_for"])

        # Version defaults to a hash of the function's file
        flow_file = inspect.getsourcefile(self.fn)
        if not version:
            try:
                version = file_hash(flow_file)
            except (FileNotFoundError, TypeError, OSError):
                pass  # `getsourcefile` can return null values and "<stdin>" for objects in repls
        self.version = version

        self.timeout_seconds = float(timeout_seconds) if timeout_seconds else None

        # FlowRunPolicy settings
        # TODO: We can instantiate a `FlowRunPolicy` and add Pydantic bound checks to
        #       validate that the user passes positive numbers here
        self.retries = (
            retries if retries is not None else PREFECT_FLOW_DEFAULT_RETRIES.value()
        )

        self.retry_delay_seconds = (
            retry_delay_seconds
            if retry_delay_seconds is not None
            else PREFECT_FLOW_DEFAULT_RETRY_DELAY_SECONDS.value()
        )

        self.parameters = parameter_schema(self.fn)
        self.should_validate_parameters = validate_parameters

        if self.should_validate_parameters:
            # Try to create the validated function now so that incompatibility can be
            # raised at declaration time rather than at runtime
            # We cannot, however, store the validated function on the flow because it
            # is not picklable in some environments
            try:
                ValidatedFunction(self.fn, config={"arbitrary_types_allowed": True})
            except pydantic.ConfigError as exc:
                raise ValueError(
                    "Flow function is not compatible with `validate_parameters`. "
                    "Disable validation or change the argument names."
                ) from exc

        self.persist_result = persist_result
        self.result_storage = result_storage
        self.result_serializer = result_serializer
        self.cache_result_in_memory = cache_result_in_memory

        # Check for collision in the registry
        registry = PrefectObjectRegistry.get()

        if registry and any(
            other
            for other in registry.get_instances(Flow)
            if other.name == self.name and id(other.fn) != id(self.fn)
        ):
            file = inspect.getsourcefile(self.fn)
            line_number = inspect.getsourcelines(self.fn)[1]
            warnings.warn(
                f"A flow named {self.name!r} and defined at '{file}:{line_number}' "
                "conflicts with another flow. Consider specifying a unique `name` "
                "parameter in the flow definition:\n\n "
                "`@flow(name='my_unique_name', ...)`"
            )
        self.on_completion = on_completion
        self.on_failure = on_failure
        self.on_cancellation = on_cancellation
        self.on_crashed = on_crashed

    def with_options(
        self,
        *,
        name: str = None,
        version: str = None,
        retries: int = 0,
        retry_delay_seconds: Union[int, float] = 0,
        description: str = None,
        flow_run_name: Optional[Union[Callable[[], str], str]] = None,
        task_runner: Union[Type[BaseTaskRunner], BaseTaskRunner] = None,
        timeout_seconds: Union[int, float] = None,
        validate_parameters: bool = None,
        persist_result: Optional[bool] = NotSet,
        result_storage: Optional[ResultStorage] = NotSet,
        result_serializer: Optional[ResultSerializer] = NotSet,
        cache_result_in_memory: bool = None,
        log_prints: Optional[bool] = NotSet,
        on_completion: Optional[
            List[Callable[[FlowSchema, FlowRun, State], None]]
        ] = None,
        on_failure: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
        on_cancellation: Optional[
            List[Callable[[FlowSchema, FlowRun, State], None]]
        ] = None,
        on_crashed: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
    ):
        """
        Create a new flow from the current object, updating provided options.

        Args:
            name: A new name for the flow.
            version: A new version for the flow.
            description: A new description for the flow.
            flow_run_name: An optional name to distinguish runs of this flow; this name
                can be provided as a string template with the flow's parameters as variables,
                or a function that returns a string.
            task_runner: A new task runner for the flow.
            timeout_seconds: A new number of seconds to fail the flow after if still
                running.
            validate_parameters: A new value indicating if flow calls should validate
                given parameters.
            retries: A new number of times to retry on flow run failure.
            retry_delay_seconds: A new number of seconds to wait before retrying the
                flow after failure. This is only applicable if `retries` is nonzero.
            persist_result: A new option for enabling or disabling result persistence.
            result_storage: A new storage type to use for results.
            result_serializer: A new serializer to use for results.
            cache_result_in_memory: A new value indicating if the flow's result should
                be cached in memory.
            on_failure: A new list of callables to run when the flow enters a failed state.
            on_completion: A new list of callables to run when the flow enters a completed state.
            on_cancellation: A new list of callables to run when the flow enters a cancelling state.
            on_crashed: A new list of callables to run when the flow enters a crashed state.

        Returns:
            A new `Flow` instance.

        Examples:

            Create a new flow from an existing flow and update the name:

            >>> @flow(name="My flow")
            >>> def my_flow():
            >>>     return 1
            >>>
            >>> new_flow = my_flow.with_options(name="My new flow")

            Create a new flow from an existing flow, update the task runner, and call
            it without an intermediate variable:

            >>> from prefect.task_runners import SequentialTaskRunner
            >>>
            >>> @flow
            >>> def my_flow(x, y):
            >>>     return x + y
            >>>
            >>> state = my_flow.with_options(task_runner=SequentialTaskRunner)(1, 3)
            >>> assert state.result() == 4

        """
        return Flow(
            fn=self.fn,
            name=name or self.name,
            description=description or self.description,
            flow_run_name=flow_run_name,
            version=version or self.version,
            task_runner=task_runner or self.task_runner,
            retries=retries or self.retries,
            retry_delay_seconds=retry_delay_seconds or self.retry_delay_seconds,
            timeout_seconds=(
                timeout_seconds if timeout_seconds is not None else self.timeout_seconds
            ),
            validate_parameters=(
                validate_parameters
                if validate_parameters is not None
                else self.should_validate_parameters
            ),
            persist_result=(
                persist_result if persist_result is not NotSet else self.persist_result
            ),
            result_storage=(
                result_storage if result_storage is not NotSet else self.result_storage
            ),
            result_serializer=(
                result_serializer
                if result_serializer is not NotSet
                else self.result_serializer
            ),
            cache_result_in_memory=(
                cache_result_in_memory
                if cache_result_in_memory is not None
                else self.cache_result_in_memory
            ),
            log_prints=log_prints if log_prints is not NotSet else self.log_prints,
            on_completion=on_completion or self.on_completion,
            on_failure=on_failure or self.on_failure,
            on_cancellation=on_cancellation or self.on_cancellation,
            on_crashed=on_crashed or self.on_crashed,
        )

    def validate_parameters(self, parameters: Dict[str, Any]) -> Dict[str, Any]:
        """
        Validate parameters for compatibility with the flow by attempting to cast the inputs to the
        associated types specified by the function's type annotations.

        Returns:
            A new dict of parameters that have been cast to the appropriate types

        Raises:
            ParameterTypeError: if the provided parameters are not valid
        """
        validated_fn = ValidatedFunction(
            self.fn, config={"arbitrary_types_allowed": True}
        )
        args, kwargs = parameters_to_args_kwargs(self.fn, parameters)

        try:
            model = validated_fn.init_model_instance(*args, **kwargs)
        except pydantic.ValidationError as exc:
            # We capture the pydantic exception and raise our own because the pydantic
            # exception is not picklable when using a cythonized pydantic installation
            raise ParameterTypeError.from_validation_error(exc) from None

        # Get the updated parameter dict with cast values from the model
        cast_parameters = {
            k: v
            for k, v in model._iter()
            if k in model.__fields_set__ or model.__fields__[k].default_factory
        }
        return cast_parameters

    def serialize_parameters(self, parameters: Dict[str, Any]) -> Dict[str, Any]:
        """
        Convert parameters to a serializable form.

        Uses FastAPI's `jsonable_encoder` to convert to JSON compatible objects without
        converting everything directly to a string. This maintains basic types like
        integers during API roundtrips.
        """
        serialized_parameters = {}
        for key, value in parameters.items():
            try:
                serialized_parameters[key] = jsonable_encoder(value)
            except (TypeError, ValueError):
                logger.debug(
                    f"Parameter {key!r} for flow {self.name!r} is of unserializable "
                    f"type {type(value).__name__!r} and will not be stored "
                    "in the backend."
                )
                serialized_parameters[key] = f"<{type(value).__name__}>"
        return serialized_parameters

    def to_deployment(
        self,
        name: str,
        interval: Optional[Union[int, float, datetime.timedelta]] = None,
        cron: Optional[str] = None,
        rrule: Optional[str] = None,
        schedule: Optional[SCHEDULE_TYPES] = None,
        parameters: Optional[dict] = None,
        triggers: Optional[List[DeploymentTrigger]] = None,
        description: Optional[str] = None,
        tags: Optional[List[str]] = None,
        version: Optional[str] = None,
        enforce_parameter_schema: bool = False,
    ):
        """
        Creates a runner deployment object for this flow.

        Args:
            name: The name to give the created deployment.
            interval: An interval on which to execute the new deployment. Accepts either a number
                or a timedelta object. If a number is given, it will be interpreted as seconds.
            cron: A cron schedule of when to execute runs of this deployment.
            rrule: An rrule schedule of when to execute runs of this deployment.
            timezone: A timezone to use for the schedule. Defaults to UTC.
            triggers: A list of triggers that will kick off runs of this deployment.
            schedule: A schedule object defining when to execute runs of this deployment.
            parameters: A dictionary of default parameter values to pass to runs of this deployment.
            description: A description for the created deployment. Defaults to the flow's
                description if not provided.
            tags: A list of tags to associate with the created deployment for organizational
                purposes.
            version: A version for the created deployment. Defaults to the flow's version.
            enforce_parameter_schema: Whether or not the Prefect API should enforce the
                parameter schema for the created deployment.

        Examples:
            Prepare two deployments and serve them:

            ```python
            from prefect import flow, serve

            @flow
            def my_flow(name):
                print(f"hello {name}")

            @flow
            def my_other_flow(name):
                print(f"goodbye {name}")

            if __name__ == "__main__":
                hello_deploy = my_flow.to_deployment("hello", tags=["dev"])
                bye_deploy = my_other_flow.to_deployment("goodbye", tags=["dev"])
                serve(hello_deploy, bye_deploy)
            ```
        """
        from prefect.deployments.runner import RunnerDeployment

        return RunnerDeployment.from_flow(
            self,
            name=name,
            interval=interval,
            cron=cron,
            rrule=rrule,
            schedule=schedule,
            tags=tags,
            triggers=triggers,
            parameters=parameters or {},
            description=description,
            version=version,
            enforce_parameter_schema=enforce_parameter_schema,
        )

    @sync_compatible
    async def serve(
        self,
        name: str,
        interval: Optional[Union[int, float, datetime.timedelta]] = None,
        cron: Optional[str] = None,
        rrule: Optional[str] = None,
        schedule: Optional[SCHEDULE_TYPES] = None,
        triggers: Optional[List[DeploymentTrigger]] = None,
        parameters: Optional[dict] = None,
        description: Optional[str] = None,
        tags: Optional[List[str]] = None,
        version: Optional[str] = None,
        enforce_parameter_schema: bool = False,
        pause_on_shutdown: bool = True,
        print_starting_message: bool = True,
    ):
        """
        Creates a deployment for this flow and starts a runner to monitor for scheduled work.

        Args:
            name: The name to give the created deployment.
            interval: An interval on which to execute the new deployment. Accepts either a number
                or a timedelta object. If a number is given, it will be interpreted as seconds.
            cron: A cron schedule of when to execute runs of this deployment.
            rrule: An rrule schedule of when to execute runs of this deployment.
            timezone: A timezone to use for the schedule. Defaults to UTC.
            triggers: A list of triggers that will kick off runs of this deployment.
            schedule: A schedule object defining when to execute runs of this deployment.
            parameters: A dictionary of default parameter values to pass to runs of this deployment.
            description: A description for the created deployment. Defaults to the flow's
                description if not provided.
            tags: A list of tags to associate with the created deployment for organizational
                purposes.
            version: A version for the created deployment. Defaults to the flow's version.
            enforce_parameter_schema: Whether or not the Prefect API should enforce the
                parameter schema for the created deployment.
            pause_on_shutdown: If True, provided schedule will be paused when the serve function is stopped.
                If False, the schedules will continue running.
            print_starting_message: Whether or not to print the starting message when flow is served.

        Examples:
            Serve a flow:

            ```python
            from prefect import flow

            @flow
            def my_flow(name):
                print(f"hello {name}")

            if __name__ == "__main__":
                my_flow.serve("example-deployment")
            ```

            Serve a flow and run it every hour:

            ```python
            from prefect import flow

            @flow
            def my_flow(name):
                print(f"hello {name}")

            if __name__ == "__main__":
                my_flow.serve("example-deployment", interval=3600)
            ```
        """
        from prefect.runner import Runner

        # Handling for my_flow.serve(__file__)
        # Will set name to name of file where my_flow.serve() without the extension
        # Non filepath strings will pass through unchanged
        name = Path(name).stem

        runner = Runner(name=name, pause_on_shutdown=pause_on_shutdown)
        deployment_id = await runner.add_flow(
            self,
            name=name,
            triggers=triggers,
            interval=interval,
            cron=cron,
            rrule=rrule,
            schedule=schedule,
            parameters=parameters,
            description=description,
            tags=tags,
            version=version,
            enforce_parameter_schema=enforce_parameter_schema,
        )
        if print_starting_message:
            help_message = (
                f"[green]Your flow {self.name!r} is being served and polling for"
                " scheduled runs!\n[/]\nTo trigger a run for this flow, use the"
                " following command:\n[blue]\n\t$ prefect deployment run"
                f" '{self.name}/{name}'\n[/]"
            )
            if PREFECT_UI_URL:
                help_message += (
                    "\nYou can also run your flow via the Prefect UI:"
                    f" [blue]{PREFECT_UI_URL.value()}/deployments/deployment/{deployment_id}[/]\n"
                )

            console = Console()
            console.print(Panel(help_message))
        await runner.start()

    @overload
    def __call__(self: "Flow[P, NoReturn]", *args: P.args, **kwargs: P.kwargs) -> None:
        # `NoReturn` matches if a type can't be inferred for the function which stops a
        # sync function from matching the `Coroutine` overload
        ...

    @overload
    def __call__(
        self: "Flow[P, Coroutine[Any, Any, T]]", *args: P.args, **kwargs: P.kwargs
    ) -> Awaitable[T]:
        ...

    @overload
    def __call__(
        self: "Flow[P, T]",
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> T:
        ...

    @overload
    def __call__(
        self: "Flow[P, T]",
        *args: P.args,
        return_state: Literal[True],
        **kwargs: P.kwargs,
    ) -> State[T]:
        ...

    def __call__(
        self,
        *args: "P.args",
        return_state: bool = False,
        wait_for: Optional[Iterable[PrefectFuture]] = None,
        **kwargs: "P.kwargs",
    ):
        """
        Run the flow and return its result.


        Flow parameter values must be serializable by Pydantic.

        If writing an async flow, this call must be awaited.

        This will create a new flow run in the API.

        Args:
            *args: Arguments to run the flow with.
            return_state: Return a Prefect State containing the result of the
                flow run.
            wait_for: Upstream task futures to wait for before starting the flow if called as a subflow
            **kwargs: Keyword arguments to run the flow with.

        Returns:
            If `return_state` is False, returns the result of the flow run.
            If `return_state` is True, returns the result of the flow run
                wrapped in a Prefect State which provides error handling.

        Examples:

            Define a flow

            >>> @flow
            >>> def my_flow(name):
            >>>     print(f"hello {name}")
            >>>     return f"goodbye {name}"

            Run a flow

            >>> my_flow("marvin")
            hello marvin
            "goodbye marvin"

            Run a flow with additional tags

            >>> from prefect import tags
            >>> with tags("db", "blue"):
            >>>     my_flow("foo")
        """
        from prefect.engine import enter_flow_run_engine_from_flow_call

        # Convert the call args/kwargs to a parameter dict
        parameters = get_call_parameters(self.fn, args, kwargs)

        return_type = "state" if return_state else "result"

        task_viz_tracker = get_task_viz_tracker()
        if task_viz_tracker:
            # this is a subflow, for now return a single task and do not go further
            # we can add support for exploring subflows for tasks in the future.
            return track_viz_task(self.isasync, self.name, parameters)

        return enter_flow_run_engine_from_flow_call(
            self,
            parameters,
            wait_for=wait_for,
            return_type=return_type,
        )

    @overload
    def _run(self: "Flow[P, NoReturn]", *args: P.args, **kwargs: P.kwargs) -> State[T]:
        # `NoReturn` matches if a type can't be inferred for the function which stops a
        # sync function from matching the `Coroutine` overload
        ...

    @overload
    def _run(
        self: "Flow[P, Coroutine[Any, Any, T]]", *args: P.args, **kwargs: P.kwargs
    ) -> Awaitable[T]:
        ...

    @overload
    def _run(self: "Flow[P, T]", *args: P.args, **kwargs: P.kwargs) -> State[T]:
        ...

    def _run(
        self,
        *args: "P.args",
        wait_for: Optional[Iterable[PrefectFuture]] = None,
        **kwargs: "P.kwargs",
    ):
        """
        Run the flow and return its final state.

        Examples:

            Run a flow and get the returned result

            >>> state = my_flow._run("marvin")
            >>> state.result()
           "goodbye marvin"
        """
        from prefect.engine import enter_flow_run_engine_from_flow_call

        # Convert the call args/kwargs to a parameter dict
        parameters = get_call_parameters(self.fn, args, kwargs)

        return enter_flow_run_engine_from_flow_call(
            self,
            parameters,
            wait_for=wait_for,
            return_type="state",
        )

    @sync_compatible
    async def visualize(self, *args, **kwargs):
        """
        Generates a graphviz object representing the current flow. In IPython notebooks,
        it's rendered inline, otherwise in a new window as a PNG.

        Raises:
            - ImportError: If `graphviz` isn't installed.
            - GraphvizExecutableNotFoundError: If the `dot` executable isn't found.
            - FlowVisualizationError: If the flow can't be visualized for any other reason.
        """
        if not PREFECT_UNIT_TEST_MODE:
            warnings.warn(
                "`flow.visualize()` will execute code inside of your flow that is not"
                " decorated with `@task` or `@flow`."
            )

        try:
            with TaskVizTracker() as tracker:
                if self.isasync:
                    await self.fn(*args, **kwargs)
                else:
                    self.fn(*args, **kwargs)

                graph = build_task_dependencies(tracker)

                visualize_task_dependencies(graph, self.name)

        except GraphvizImportError:
            raise
        except GraphvizExecutableNotFoundError:
            raise
        except VisualizationUnsupportedError:
            raise
        except FlowVisualizationError:
            raise
        except Exception as e:
            msg = (
                "It's possible you are trying to visualize a flow that contains "
                "code that directly interacts with the result of a task"
                " inside of the flow. \nTry passing a `viz_return_value` "
                "to the task decorator, e.g. `@task(viz_return_value=[1, 2, 3]).`"
            )

            new_exception = type(e)(str(e) + "\n" + msg)
            # Copy traceback information from the original exception
            new_exception.__traceback__ = e.__traceback__
            raise new_exception

serialize_parameters

Convert parameters to a serializable form.

Uses FastAPI's jsonable_encoder to convert to JSON compatible objects without converting everything directly to a string. This maintains basic types like integers during API roundtrips.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def serialize_parameters(self, parameters: Dict[str, Any]) -> Dict[str, Any]:
    """
    Convert parameters to a serializable form.

    Uses FastAPI's `jsonable_encoder` to convert to JSON compatible objects without
    converting everything directly to a string. This maintains basic types like
    integers during API roundtrips.
    """
    serialized_parameters = {}
    for key, value in parameters.items():
        try:
            serialized_parameters[key] = jsonable_encoder(value)
        except (TypeError, ValueError):
            logger.debug(
                f"Parameter {key!r} for flow {self.name!r} is of unserializable "
                f"type {type(value).__name__!r} and will not be stored "
                "in the backend."
            )
            serialized_parameters[key] = f"<{type(value).__name__}>"
    return serialized_parameters

serve async

Creates a deployment for this flow and starts a runner to monitor for scheduled work.

Parameters:

Name Type Description Default
name str

The name to give the created deployment.

required
interval Optional[Union[int, float, timedelta]]

An interval on which to execute the new deployment. Accepts either a number or a timedelta object. If a number is given, it will be interpreted as seconds.

None
cron Optional[str]

A cron schedule of when to execute runs of this deployment.

None
rrule Optional[str]

An rrule schedule of when to execute runs of this deployment.

None
timezone

A timezone to use for the schedule. Defaults to UTC.

required
triggers Optional[List[DeploymentTrigger]]

A list of triggers that will kick off runs of this deployment.

None
schedule Optional[SCHEDULE_TYPES]

A schedule object defining when to execute runs of this deployment.

None
parameters Optional[dict]

A dictionary of default parameter values to pass to runs of this deployment.

None
description Optional[str]

A description for the created deployment. Defaults to the flow's description if not provided.

None
tags Optional[List[str]]

A list of tags to associate with the created deployment for organizational purposes.

None
version Optional[str]

A version for the created deployment. Defaults to the flow's version.

None
enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for the created deployment.

False
pause_on_shutdown bool

If True, provided schedule will be paused when the serve function is stopped. If False, the schedules will continue running.

True
print_starting_message bool

Whether or not to print the starting message when flow is served.

True

Examples:

Serve a flow:

from prefect import flow

@flow
def my_flow(name):
    print(f"hello {name}")

if __name__ == "__main__":
    my_flow.serve("example-deployment")

Serve a flow and run it every hour:

from prefect import flow

@flow
def my_flow(name):
    print(f"hello {name}")

if __name__ == "__main__":
    my_flow.serve("example-deployment", interval=3600)
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
@sync_compatible
async def serve(
    self,
    name: str,
    interval: Optional[Union[int, float, datetime.timedelta]] = None,
    cron: Optional[str] = None,
    rrule: Optional[str] = None,
    schedule: Optional[SCHEDULE_TYPES] = None,
    triggers: Optional[List[DeploymentTrigger]] = None,
    parameters: Optional[dict] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    version: Optional[str] = None,
    enforce_parameter_schema: bool = False,
    pause_on_shutdown: bool = True,
    print_starting_message: bool = True,
):
    """
    Creates a deployment for this flow and starts a runner to monitor for scheduled work.

    Args:
        name: The name to give the created deployment.
        interval: An interval on which to execute the new deployment. Accepts either a number
            or a timedelta object. If a number is given, it will be interpreted as seconds.
        cron: A cron schedule of when to execute runs of this deployment.
        rrule: An rrule schedule of when to execute runs of this deployment.
        timezone: A timezone to use for the schedule. Defaults to UTC.
        triggers: A list of triggers that will kick off runs of this deployment.
        schedule: A schedule object defining when to execute runs of this deployment.
        parameters: A dictionary of default parameter values to pass to runs of this deployment.
        description: A description for the created deployment. Defaults to the flow's
            description if not provided.
        tags: A list of tags to associate with the created deployment for organizational
            purposes.
        version: A version for the created deployment. Defaults to the flow's version.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for the created deployment.
        pause_on_shutdown: If True, provided schedule will be paused when the serve function is stopped.
            If False, the schedules will continue running.
        print_starting_message: Whether or not to print the starting message when flow is served.

    Examples:
        Serve a flow:

        ```python
        from prefect import flow

        @flow
        def my_flow(name):
            print(f"hello {name}")

        if __name__ == "__main__":
            my_flow.serve("example-deployment")
        ```

        Serve a flow and run it every hour:

        ```python
        from prefect import flow

        @flow
        def my_flow(name):
            print(f"hello {name}")

        if __name__ == "__main__":
            my_flow.serve("example-deployment", interval=3600)
        ```
    """
    from prefect.runner import Runner

    # Handling for my_flow.serve(__file__)
    # Will set name to name of file where my_flow.serve() without the extension
    # Non filepath strings will pass through unchanged
    name = Path(name).stem

    runner = Runner(name=name, pause_on_shutdown=pause_on_shutdown)
    deployment_id = await runner.add_flow(
        self,
        name=name,
        triggers=triggers,
        interval=interval,
        cron=cron,
        rrule=rrule,
        schedule=schedule,
        parameters=parameters,
        description=description,
        tags=tags,
        version=version,
        enforce_parameter_schema=enforce_parameter_schema,
    )
    if print_starting_message:
        help_message = (
            f"[green]Your flow {self.name!r} is being served and polling for"
            " scheduled runs!\n[/]\nTo trigger a run for this flow, use the"
            " following command:\n[blue]\n\t$ prefect deployment run"
            f" '{self.name}/{name}'\n[/]"
        )
        if PREFECT_UI_URL:
            help_message += (
                "\nYou can also run your flow via the Prefect UI:"
                f" [blue]{PREFECT_UI_URL.value()}/deployments/deployment/{deployment_id}[/]\n"
            )

        console = Console()
        console.print(Panel(help_message))
    await runner.start()

to_deployment

Creates a runner deployment object for this flow.

Parameters:

Name Type Description Default
name str

The name to give the created deployment.

required
interval Optional[Union[int, float, timedelta]]

An interval on which to execute the new deployment. Accepts either a number or a timedelta object. If a number is given, it will be interpreted as seconds.

None
cron Optional[str]

A cron schedule of when to execute runs of this deployment.

None
rrule Optional[str]

An rrule schedule of when to execute runs of this deployment.

None
timezone

A timezone to use for the schedule. Defaults to UTC.

required
triggers Optional[List[DeploymentTrigger]]

A list of triggers that will kick off runs of this deployment.

None
schedule Optional[SCHEDULE_TYPES]

A schedule object defining when to execute runs of this deployment.

None
parameters Optional[dict]

A dictionary of default parameter values to pass to runs of this deployment.

None
description Optional[str]

A description for the created deployment. Defaults to the flow's description if not provided.

None
tags Optional[List[str]]

A list of tags to associate with the created deployment for organizational purposes.

None
version Optional[str]

A version for the created deployment. Defaults to the flow's version.

None
enforce_parameter_schema bool

Whether or not the Prefect API should enforce the parameter schema for the created deployment.

False

Examples:

Prepare two deployments and serve them:

from prefect import flow, serve

@flow
def my_flow(name):
    print(f"hello {name}")

@flow
def my_other_flow(name):
    print(f"goodbye {name}")

if __name__ == "__main__":
    hello_deploy = my_flow.to_deployment("hello", tags=["dev"])
    bye_deploy = my_other_flow.to_deployment("goodbye", tags=["dev"])
    serve(hello_deploy, bye_deploy)
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def to_deployment(
    self,
    name: str,
    interval: Optional[Union[int, float, datetime.timedelta]] = None,
    cron: Optional[str] = None,
    rrule: Optional[str] = None,
    schedule: Optional[SCHEDULE_TYPES] = None,
    parameters: Optional[dict] = None,
    triggers: Optional[List[DeploymentTrigger]] = None,
    description: Optional[str] = None,
    tags: Optional[List[str]] = None,
    version: Optional[str] = None,
    enforce_parameter_schema: bool = False,
):
    """
    Creates a runner deployment object for this flow.

    Args:
        name: The name to give the created deployment.
        interval: An interval on which to execute the new deployment. Accepts either a number
            or a timedelta object. If a number is given, it will be interpreted as seconds.
        cron: A cron schedule of when to execute runs of this deployment.
        rrule: An rrule schedule of when to execute runs of this deployment.
        timezone: A timezone to use for the schedule. Defaults to UTC.
        triggers: A list of triggers that will kick off runs of this deployment.
        schedule: A schedule object defining when to execute runs of this deployment.
        parameters: A dictionary of default parameter values to pass to runs of this deployment.
        description: A description for the created deployment. Defaults to the flow's
            description if not provided.
        tags: A list of tags to associate with the created deployment for organizational
            purposes.
        version: A version for the created deployment. Defaults to the flow's version.
        enforce_parameter_schema: Whether or not the Prefect API should enforce the
            parameter schema for the created deployment.

    Examples:
        Prepare two deployments and serve them:

        ```python
        from prefect import flow, serve

        @flow
        def my_flow(name):
            print(f"hello {name}")

        @flow
        def my_other_flow(name):
            print(f"goodbye {name}")

        if __name__ == "__main__":
            hello_deploy = my_flow.to_deployment("hello", tags=["dev"])
            bye_deploy = my_other_flow.to_deployment("goodbye", tags=["dev"])
            serve(hello_deploy, bye_deploy)
        ```
    """
    from prefect.deployments.runner import RunnerDeployment

    return RunnerDeployment.from_flow(
        self,
        name=name,
        interval=interval,
        cron=cron,
        rrule=rrule,
        schedule=schedule,
        tags=tags,
        triggers=triggers,
        parameters=parameters or {},
        description=description,
        version=version,
        enforce_parameter_schema=enforce_parameter_schema,
    )

validate_parameters

Validate parameters for compatibility with the flow by attempting to cast the inputs to the associated types specified by the function's type annotations.

Returns:

Type Description
Dict[str, Any]

A new dict of parameters that have been cast to the appropriate types

Raises:

Type Description
ParameterTypeError

if the provided parameters are not valid

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
def validate_parameters(self, parameters: Dict[str, Any]) -> Dict[str, Any]:
    """
    Validate parameters for compatibility with the flow by attempting to cast the inputs to the
    associated types specified by the function's type annotations.

    Returns:
        A new dict of parameters that have been cast to the appropriate types

    Raises:
        ParameterTypeError: if the provided parameters are not valid
    """
    validated_fn = ValidatedFunction(
        self.fn, config={"arbitrary_types_allowed": True}
    )
    args, kwargs = parameters_to_args_kwargs(self.fn, parameters)

    try:
        model = validated_fn.init_model_instance(*args, **kwargs)
    except pydantic.ValidationError as exc:
        # We capture the pydantic exception and raise our own because the pydantic
        # exception is not picklable when using a cythonized pydantic installation
        raise ParameterTypeError.from_validation_error(exc) from None

    # Get the updated parameter dict with cast values from the model
    cast_parameters = {
        k: v
        for k, v in model._iter()
        if k in model.__fields_set__ or model.__fields__[k].default_factory
    }
    return cast_parameters

visualize async

Generates a graphviz object representing the current flow. In IPython notebooks, it's rendered inline, otherwise in a new window as a PNG.

Raises:

Type Description
-ImportError

If graphviz isn't installed.

-GraphvizExecutableNotFoundError

If the dot executable isn't found.

-FlowVisualizationError

If the flow can't be visualized for any other reason.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
@sync_compatible
async def visualize(self, *args, **kwargs):
    """
    Generates a graphviz object representing the current flow. In IPython notebooks,
    it's rendered inline, otherwise in a new window as a PNG.

    Raises:
        - ImportError: If `graphviz` isn't installed.
        - GraphvizExecutableNotFoundError: If the `dot` executable isn't found.
        - FlowVisualizationError: If the flow can't be visualized for any other reason.
    """
    if not PREFECT_UNIT_TEST_MODE:
        warnings.warn(
            "`flow.visualize()` will execute code inside of your flow that is not"
            " decorated with `@task` or `@flow`."
        )

    try:
        with TaskVizTracker() as tracker:
            if self.isasync:
                await self.fn(*args, **kwargs)
            else:
                self.fn(*args, **kwargs)

            graph = build_task_dependencies(tracker)

            visualize_task_dependencies(graph, self.name)

    except GraphvizImportError:
        raise
    except GraphvizExecutableNotFoundError:
        raise
    except VisualizationUnsupportedError:
        raise
    except FlowVisualizationError:
        raise
    except Exception as e:
        msg = (
            "It's possible you are trying to visualize a flow that contains "
            "code that directly interacts with the result of a task"
            " inside of the flow. \nTry passing a `viz_return_value` "
            "to the task decorator, e.g. `@task(viz_return_value=[1, 2, 3]).`"
        )

        new_exception = type(e)(str(e) + "\n" + msg)
        # Copy traceback information from the original exception
        new_exception.__traceback__ = e.__traceback__
        raise new_exception

with_options

Create a new flow from the current object, updating provided options.

Parameters:

Name Type Description Default
name str

A new name for the flow.

None
version str

A new version for the flow.

None
description str

A new description for the flow.

None
flow_run_name Optional[Union[Callable[[], str], str]]

An optional name to distinguish runs of this flow; this name can be provided as a string template with the flow's parameters as variables, or a function that returns a string.

None
task_runner Union[Type[BaseTaskRunner], BaseTaskRunner]

A new task runner for the flow.

None
timeout_seconds Union[int, float]

A new number of seconds to fail the flow after if still running.

None
validate_parameters bool

A new value indicating if flow calls should validate given parameters.

None
retries int

A new number of times to retry on flow run failure.

0
retry_delay_seconds Union[int, float]

A new number of seconds to wait before retrying the flow after failure. This is only applicable if retries is nonzero.

0
persist_result Optional[bool]

A new option for enabling or disabling result persistence.

NotSet
result_storage Optional[ResultStorage]

A new storage type to use for results.

NotSet
result_serializer Optional[ResultSerializer]

A new serializer to use for results.

NotSet
cache_result_in_memory bool

A new value indicating if the flow's result should be cached in memory.

None
on_failure Optional[List[Callable[[Flow, FlowRun, State], None]]]

A new list of callables to run when the flow enters a failed state.

None
on_completion Optional[List[Callable[[Flow, FlowRun, State], None]]]

A new list of callables to run when the flow enters a completed state.

None
on_cancellation Optional[List[Callable[[Flow, FlowRun, State], None]]]

A new list of callables to run when the flow enters a cancelling state.

None
on_crashed Optional[List[Callable[[Flow, FlowRun, State], None]]]

A new list of callables to run when the flow enters a crashed state.

None

Returns:

Type Description

A new Flow instance.

Create a new flow from an existing flow and update the name:

>>> @flow(name="My flow")
>>> def my_flow():
>>>     return 1
>>>
>>> new_flow = my_flow.with_options(name="My new flow")

Create a new flow from an existing flow, update the task runner, and call
it without an intermediate variable:

>>> from prefect.task_runners import SequentialTaskRunner
>>>
>>> @flow
>>> def my_flow(x, y):
>>>     return x + y
>>>
>>> state = my_flow.with_options(task_runner=SequentialTaskRunner)(1, 3)
>>> assert state.result() == 4
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def with_options(
    self,
    *,
    name: str = None,
    version: str = None,
    retries: int = 0,
    retry_delay_seconds: Union[int, float] = 0,
    description: str = None,
    flow_run_name: Optional[Union[Callable[[], str], str]] = None,
    task_runner: Union[Type[BaseTaskRunner], BaseTaskRunner] = None,
    timeout_seconds: Union[int, float] = None,
    validate_parameters: bool = None,
    persist_result: Optional[bool] = NotSet,
    result_storage: Optional[ResultStorage] = NotSet,
    result_serializer: Optional[ResultSerializer] = NotSet,
    cache_result_in_memory: bool = None,
    log_prints: Optional[bool] = NotSet,
    on_completion: Optional[
        List[Callable[[FlowSchema, FlowRun, State], None]]
    ] = None,
    on_failure: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
    on_cancellation: Optional[
        List[Callable[[FlowSchema, FlowRun, State], None]]
    ] = None,
    on_crashed: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
):
    """
    Create a new flow from the current object, updating provided options.

    Args:
        name: A new name for the flow.
        version: A new version for the flow.
        description: A new description for the flow.
        flow_run_name: An optional name to distinguish runs of this flow; this name
            can be provided as a string template with the flow's parameters as variables,
            or a function that returns a string.
        task_runner: A new task runner for the flow.
        timeout_seconds: A new number of seconds to fail the flow after if still
            running.
        validate_parameters: A new value indicating if flow calls should validate
            given parameters.
        retries: A new number of times to retry on flow run failure.
        retry_delay_seconds: A new number of seconds to wait before retrying the
            flow after failure. This is only applicable if `retries` is nonzero.
        persist_result: A new option for enabling or disabling result persistence.
        result_storage: A new storage type to use for results.
        result_serializer: A new serializer to use for results.
        cache_result_in_memory: A new value indicating if the flow's result should
            be cached in memory.
        on_failure: A new list of callables to run when the flow enters a failed state.
        on_completion: A new list of callables to run when the flow enters a completed state.
        on_cancellation: A new list of callables to run when the flow enters a cancelling state.
        on_crashed: A new list of callables to run when the flow enters a crashed state.

    Returns:
        A new `Flow` instance.

    Examples:

        Create a new flow from an existing flow and update the name:

        >>> @flow(name="My flow")
        >>> def my_flow():
        >>>     return 1
        >>>
        >>> new_flow = my_flow.with_options(name="My new flow")

        Create a new flow from an existing flow, update the task runner, and call
        it without an intermediate variable:

        >>> from prefect.task_runners import SequentialTaskRunner
        >>>
        >>> @flow
        >>> def my_flow(x, y):
        >>>     return x + y
        >>>
        >>> state = my_flow.with_options(task_runner=SequentialTaskRunner)(1, 3)
        >>> assert state.result() == 4

    """
    return Flow(
        fn=self.fn,
        name=name or self.name,
        description=description or self.description,
        flow_run_name=flow_run_name,
        version=version or self.version,
        task_runner=task_runner or self.task_runner,
        retries=retries or self.retries,
        retry_delay_seconds=retry_delay_seconds or self.retry_delay_seconds,
        timeout_seconds=(
            timeout_seconds if timeout_seconds is not None else self.timeout_seconds
        ),
        validate_parameters=(
            validate_parameters
            if validate_parameters is not None
            else self.should_validate_parameters
        ),
        persist_result=(
            persist_result if persist_result is not NotSet else self.persist_result
        ),
        result_storage=(
            result_storage if result_storage is not NotSet else self.result_storage
        ),
        result_serializer=(
            result_serializer
            if result_serializer is not NotSet
            else self.result_serializer
        ),
        cache_result_in_memory=(
            cache_result_in_memory
            if cache_result_in_memory is not None
            else self.cache_result_in_memory
        ),
        log_prints=log_prints if log_prints is not NotSet else self.log_prints,
        on_completion=on_completion or self.on_completion,
        on_failure=on_failure or self.on_failure,
        on_cancellation=on_cancellation or self.on_cancellation,
        on_crashed=on_crashed or self.on_crashed,
    )

flow

Decorator to designate a function as a Prefect workflow.

This decorator may be used for asynchronous or synchronous functions.

Flow parameters must be serializable by Pydantic.

Parameters:

Name Type Description Default
name Optional[str]

An optional name for the flow; if not provided, the name will be inferred from the given function.

None
version Optional[str]

An optional version string for the flow; if not provided, we will attempt to create a version string as a hash of the file containing the wrapped function; if the file cannot be located, the version will be null.

None
flow_run_name Optional[Union[Callable[[], str], str]]

An optional name to distinguish runs of this flow; this name can be provided as a string template with the flow's parameters as variables, or a function that returns a string.

None
task_runner BaseTaskRunner

An optional task runner to use for task execution within the flow; if not provided, a ConcurrentTaskRunner will be instantiated.

ConcurrentTaskRunner
description str

An optional string description for the flow; if not provided, the description will be pulled from the docstring for the decorated function.

None
timeout_seconds Union[int, float]

An optional number of seconds indicating a maximum runtime for the flow. If the flow exceeds this runtime, it will be marked as failed. Flow execution may continue until the next task is called.

None
validate_parameters bool

By default, parameters passed to flows are validated by Pydantic. This will check that input values conform to the annotated types on the function. Where possible, values will be coerced into the correct type; for example, if a parameter is defined as x: int and "5" is passed, it will be resolved to 5. If set to False, no validation will be performed on flow parameters.

True
retries int

An optional number of times to retry on flow run failure.

None
retry_delay_seconds Union[int, float]

An optional number of seconds to wait before retrying the flow after failure. This is only applicable if retries is nonzero.

None
persist_result Optional[bool]

An optional toggle indicating whether the result of this flow should be persisted to result storage. Defaults to None, which indicates that Prefect should choose whether the result should be persisted depending on the features being used.

None
result_storage Optional[ResultStorage]

An optional block to use to persist the result of this flow. This value will be used as the default for any tasks in this flow. If not provided, the local file system will be used unless called as a subflow, at which point the default will be loaded from the parent flow.

None
result_serializer Optional[ResultSerializer]

An optional serializer to use to serialize the result of this flow for persistence. This value will be used as the default for any tasks in this flow. If not provided, the value of PREFECT_RESULTS_DEFAULT_SERIALIZER will be used unless called as a subflow, at which point the default will be loaded from the parent flow.

None
log_prints Optional[bool]

If set, print statements in the flow will be redirected to the Prefect logger for the flow run. Defaults to None, which indicates that the value from the parent flow should be used. If this is a parent flow, the default is pulled from the PREFECT_LOGGING_LOG_PRINTS setting.

None
on_completion Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of functions to call when the flow run is completed. Each function should accept three arguments: the flow, the flow run, and the final state of the flow run.

None
on_failure Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of functions to call when the flow run fails. Each function should accept three arguments: the flow, the flow run, and the final state of the flow run.

None
on_cancellation Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of functions to call when the flow run is cancelled. These functions will be passed the flow, flow run, and final state.

None
on_crashed Optional[List[Callable[[Flow, FlowRun, State], None]]]

An optional list of functions to call when the flow run crashes. Each function should accept three arguments: the flow, the flow run, and the final state of the flow run.

None

Returns:

Type Description

A callable Flow object which, when called, will run the flow and return its

final state.

Examples:

Define a simple flow

>>> from prefect import flow
>>> @flow
>>> def add(x, y):
>>>     return x + y

Define an async flow

>>> @flow
>>> async def add(x, y):
>>>     return x + y

Define a flow with a version and description

>>> @flow(version="first-flow", description="This flow is empty!")
>>> def my_flow():
>>>     pass

Define a flow with a custom name

>>> @flow(name="The Ultimate Flow")
>>> def my_flow():
>>>     pass

Define a flow that submits its tasks to dask

>>> from prefect_dask.task_runners import DaskTaskRunner
>>>
>>> @flow(task_runner=DaskTaskRunner)
>>> def my_flow():
>>>     pass
Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
def flow(
    __fn=None,
    *,
    name: Optional[str] = None,
    version: Optional[str] = None,
    flow_run_name: Optional[Union[Callable[[], str], str]] = None,
    retries: int = None,
    retry_delay_seconds: Union[int, float] = None,
    task_runner: BaseTaskRunner = ConcurrentTaskRunner,
    description: str = None,
    timeout_seconds: Union[int, float] = None,
    validate_parameters: bool = True,
    persist_result: Optional[bool] = None,
    result_storage: Optional[ResultStorage] = None,
    result_serializer: Optional[ResultSerializer] = None,
    cache_result_in_memory: bool = True,
    log_prints: Optional[bool] = None,
    on_completion: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
    on_failure: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
    on_cancellation: Optional[
        List[Callable[[FlowSchema, FlowRun, State], None]]
    ] = None,
    on_crashed: Optional[List[Callable[[FlowSchema, FlowRun, State], None]]] = None,
):
    """
    Decorator to designate a function as a Prefect workflow.

    This decorator may be used for asynchronous or synchronous functions.

    Flow parameters must be serializable by Pydantic.

    Args:
        name: An optional name for the flow; if not provided, the name will be inferred
            from the given function.
        version: An optional version string for the flow; if not provided, we will
            attempt to create a version string as a hash of the file containing the
            wrapped function; if the file cannot be located, the version will be null.
        flow_run_name: An optional name to distinguish runs of this flow; this name can
            be provided as a string template with the flow's parameters as variables,
            or a function that returns a string.
        task_runner: An optional task runner to use for task execution within the flow; if
            not provided, a `ConcurrentTaskRunner` will be instantiated.
        description: An optional string description for the flow; if not provided, the
            description will be pulled from the docstring for the decorated function.
        timeout_seconds: An optional number of seconds indicating a maximum runtime for
            the flow. If the flow exceeds this runtime, it will be marked as failed.
            Flow execution may continue until the next task is called.
        validate_parameters: By default, parameters passed to flows are validated by
            Pydantic. This will check that input values conform to the annotated types
            on the function. Where possible, values will be coerced into the correct
            type; for example, if a parameter is defined as `x: int` and "5" is passed,
            it will be resolved to `5`. If set to `False`, no validation will be
            performed on flow parameters.
        retries: An optional number of times to retry on flow run failure.
        retry_delay_seconds: An optional number of seconds to wait before retrying the
            flow after failure. This is only applicable if `retries` is nonzero.
        persist_result: An optional toggle indicating whether the result of this flow
            should be persisted to result storage. Defaults to `None`, which indicates
            that Prefect should choose whether the result should be persisted depending on
            the features being used.
        result_storage: An optional block to use to persist the result of this flow.
            This value will be used as the default for any tasks in this flow.
            If not provided, the local file system will be used unless called as
            a subflow, at which point the default will be loaded from the parent flow.
        result_serializer: An optional serializer to use to serialize the result of this
            flow for persistence. This value will be used as the default for any tasks
            in this flow. If not provided, the value of `PREFECT_RESULTS_DEFAULT_SERIALIZER`
            will be used unless called as a subflow, at which point the default will be
            loaded from the parent flow.
        log_prints: If set, `print` statements in the flow will be redirected to the
            Prefect logger for the flow run. Defaults to `None`, which indicates that
            the value from the parent flow should be used. If this is a parent flow,
            the default is pulled from the `PREFECT_LOGGING_LOG_PRINTS` setting.
        on_completion: An optional list of functions to call when the flow run is
            completed. Each function should accept three arguments: the flow, the flow
            run, and the final state of the flow run.
        on_failure: An optional list of functions to call when the flow run fails. Each
            function should accept three arguments: the flow, the flow run, and the
            final state of the flow run.
        on_cancellation: An optional list of functions to call when the flow run is
            cancelled. These functions will be passed the flow, flow run, and final state.
        on_crashed: An optional list of functions to call when the flow run crashes. Each
            function should accept three arguments: the flow, the flow run, and the
            final state of the flow run.

    Returns:
        A callable `Flow` object which, when called, will run the flow and return its
        final state.

    Examples:
        Define a simple flow

        >>> from prefect import flow
        >>> @flow
        >>> def add(x, y):
        >>>     return x + y

        Define an async flow

        >>> @flow
        >>> async def add(x, y):
        >>>     return x + y

        Define a flow with a version and description

        >>> @flow(version="first-flow", description="This flow is empty!")
        >>> def my_flow():
        >>>     pass

        Define a flow with a custom name

        >>> @flow(name="The Ultimate Flow")
        >>> def my_flow():
        >>>     pass

        Define a flow that submits its tasks to dask

        >>> from prefect_dask.task_runners import DaskTaskRunner
        >>>
        >>> @flow(task_runner=DaskTaskRunner)
        >>> def my_flow():
        >>>     pass
    """
    if __fn:
        return cast(
            Flow[P, R],
            Flow(
                fn=__fn,
                name=name,
                version=version,
                flow_run_name=flow_run_name,
                task_runner=task_runner,
                description=description,
                timeout_seconds=timeout_seconds,
                validate_parameters=validate_parameters,
                retries=retries,
                retry_delay_seconds=retry_delay_seconds,
                persist_result=persist_result,
                result_storage=result_storage,
                result_serializer=result_serializer,
                cache_result_in_memory=cache_result_in_memory,
                log_prints=log_prints,
                on_completion=on_completion,
                on_failure=on_failure,
                on_cancellation=on_cancellation,
                on_crashed=on_crashed,
            ),
        )
    else:
        return cast(
            Callable[[Callable[P, R]], Flow[P, R]],
            partial(
                flow,
                name=name,
                version=version,
                flow_run_name=flow_run_name,
                task_runner=task_runner,
                description=description,
                timeout_seconds=timeout_seconds,
                validate_parameters=validate_parameters,
                retries=retries,
                retry_delay_seconds=retry_delay_seconds,
                persist_result=persist_result,
                result_storage=result_storage,
                result_serializer=result_serializer,
                cache_result_in_memory=cache_result_in_memory,
                log_prints=log_prints,
                on_completion=on_completion,
                on_failure=on_failure,
                on_cancellation=on_cancellation,
                on_crashed=on_crashed,
            ),
        )

load_flow_from_entrypoint

Extract a flow object from a script at an entrypoint by running all of the code in the file.

Parameters:

Name Type Description Default
entrypoint str

a string in the format <path_to_script>:<flow_func_name>

required

Returns:

Type Description
Flow

The flow object from the script

Raises:

Type Description
FlowScriptError

If an exception is encountered while running the script

MissingFlowError

If the flow function specified in the entrypoint does not exist

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
def load_flow_from_entrypoint(entrypoint: str) -> Flow:
    """
    Extract a flow object from a script at an entrypoint by running all of the code in the file.

    Args:
        entrypoint: a string in the format `<path_to_script>:<flow_func_name>`

    Returns:
        The flow object from the script

    Raises:
        FlowScriptError: If an exception is encountered while running the script
        MissingFlowError: If the flow function specified in the entrypoint does not exist
    """
    with PrefectObjectRegistry(
        block_code_execution=True,
        capture_failures=True,
    ):
        path, func_name = entrypoint.split(":")
        try:
            flow = import_object(entrypoint)
        except AttributeError as exc:
            raise MissingFlowError(
                f"Flow function with name {func_name!r} not found in {path!r}. "
            ) from exc

        if not isinstance(flow, Flow):
            raise MissingFlowError(
                f"Function with name {func_name!r} is not a flow. Make sure that it is "
                "decorated with '@flow'."
            )

        return flow

load_flow_from_script

Extract a flow object from a script by running all of the code in the file.

If the script has multiple flows in it, a flow name must be provided to specify the flow to return.

Parameters:

Name Type Description Default
path str

A path to a Python script containing flows

required
flow_name str

An optional flow name to look for in the script

None

Returns:

Type Description
Flow

The flow object from the script

Raises:

Type Description
FlowScriptError

If an exception is encountered while running the script

MissingFlowError

If no flows exist in the iterable

MissingFlowError

If a flow name is provided and that flow does not exist

UnspecifiedFlowError

If multiple flows exist but no flow name was provided

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
def load_flow_from_script(path: str, flow_name: str = None) -> Flow:
    """
    Extract a flow object from a script by running all of the code in the file.

    If the script has multiple flows in it, a flow name must be provided to specify
    the flow to return.

    Args:
        path: A path to a Python script containing flows
        flow_name: An optional flow name to look for in the script

    Returns:
        The flow object from the script

    Raises:
        FlowScriptError: If an exception is encountered while running the script
        MissingFlowError: If no flows exist in the iterable
        MissingFlowError: If a flow name is provided and that flow does not exist
        UnspecifiedFlowError: If multiple flows exist but no flow name was provided
    """
    return select_flow(
        load_flows_from_script(path),
        flow_name=flow_name,
        from_message=f"in script '{path}'",
    )

load_flow_from_text

Load a flow from a text script.

The script will be written to a temporary local file path so errors can refer to line numbers and contextual tracebacks can be provided.

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
def load_flow_from_text(script_contents: AnyStr, flow_name: str):
    """
    Load a flow from a text script.

    The script will be written to a temporary local file path so errors can refer
    to line numbers and contextual tracebacks can be provided.
    """
    with NamedTemporaryFile(
        mode="wt" if isinstance(script_contents, str) else "wb",
        prefix=f"flow-script-{flow_name}",
        suffix=".py",
        delete=False,
    ) as tmpfile:
        tmpfile.write(script_contents)
        tmpfile.flush()
    try:
        flow = load_flow_from_script(tmpfile.name, flow_name=flow_name)
    finally:
        # windows compat
        tmpfile.close()
        os.remove(tmpfile.name)
    return flow

load_flows_from_script

Load all flow objects from the given python script. All of the code in the file will be executed.

Returns:

Type Description
List[Flow]

A list of flows

Raises:

Type Description
FlowScriptError

If an exception is encountered while running the script

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
def load_flows_from_script(path: str) -> List[Flow]:
    """
    Load all flow objects from the given python script. All of the code in the file
    will be executed.

    Returns:
        A list of flows

    Raises:
        FlowScriptError: If an exception is encountered while running the script
    """
    return registry_from_script(path).get_instances(Flow)

select_flow

Select the only flow in an iterable or a flow specified by name.

Returns A single flow object

Raises:

Type Description
MissingFlowError

If no flows exist in the iterable

MissingFlowError

If a flow name is provided and that flow does not exist

UnspecifiedFlowError

If multiple flows exist but no flow name was provided

Source code in /home/runner/work/docs/docs/prefect_source/src/prefect/flows.py
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
def select_flow(
    flows: Iterable[Flow], flow_name: str = None, from_message: str = None
) -> Flow:
    """
    Select the only flow in an iterable or a flow specified by name.

    Returns
        A single flow object

    Raises:
        MissingFlowError: If no flows exist in the iterable
        MissingFlowError: If a flow name is provided and that flow does not exist
        UnspecifiedFlowError: If multiple flows exist but no flow name was provided
    """
    # Convert to flows by name
    flows = {f.name: f for f in flows}

    # Add a leading space if given, otherwise use an empty string
    from_message = (" " + from_message) if from_message else ""
    if not flows:
        raise MissingFlowError(f"No flows found{from_message}.")

    elif flow_name and flow_name not in flows:
        raise MissingFlowError(
            f"Flow {flow_name!r} not found{from_message}. "
            f"Found the following flows: {listrepr(flows.keys())}. "
            "Check to make sure that your flow function is decorated with `@flow`."
        )

    elif not flow_name and len(flows) > 1:
        raise UnspecifiedFlowError(
            (
                f"Found {len(flows)} flows{from_message}:"
                f" {listrepr(sorted(flows.keys()))}. Specify a flow name to select a"
                " flow."
            ),
        )

    if flow_name:
        return flows[flow_name]
    else:
        return list(flows.values())[0]